夜深人静写算法(7):线段树

734 查看

一、引例
1、区间最值
【例题1】给定一个n(n <= 100000)个元素的数组A,有m(m <= 100000)个操作,共两种操作:
1、Q a b         询问:表示询问区间[a, b]的最大值;
2、C a c         更新:表示将第a个元素变成c;

静态的区间最值可以利用RMQ来解决,但是RMQ的ST算法是在元素值给定的情况下进行的预处理,然后在O(1)时间内进行询问,这里第二种操作需要实时修改某个元素的值,所以无法进行预处理。

由于每次操作都是独立事件,所以m次操作都无法互相影响,于是时间复杂度的改善只能在单次操作上进行优化了,我们可以试想能否将任何的区间[a, b](a < b)都拆成log(b-a+1)个小区间,然后只对这些拆散的区间进行询问,这样每次操作的最坏时间复杂度就变成log(n)了。

2、区间求和
【例题2】给定一个n(n <= 100000)个元素的数组A,有m(m <= 100000)个操作,共两种操作:
1、Q a b         询问:表示询问区间[a, b]的元素和;
2、A a b c       更新:表示将区间[a, b]的每个元素加上一个值c;

先来看朴素算法,两个操作都用遍历来完成,单次时间复杂度在最坏情况下都是O(n)的,所以m次操作下来总的时间复杂度就是O(nm)了,复杂度太高。

再来看看树状数组,对于第一类操作,树状数组可以在log(n)的时间内出解;然而第二类操作,还是需要遍历每个元素执行add操作,复杂度为nlog(n),所以也不可行。这个问题同样也需要利用区间拆分的思想。

线段树就是利用了区间拆分的思想,完美解决了上述问题。

二、线段树的基本概念
1、二叉搜索树
线段树是一种二叉搜索树,即每个结点最多有两棵子树的树结构。通常子树被称作“左子树”(left subtree)和“右子树”(right subtree)。线段树的每个结点存储了一个区间(线段),故而得名。

56c354ef96dee43d1ef1f986w1LSq6vY (1)
图二-1-1

如图二-1-1所示,表示的是一个[1, 6]的区间的线段树结构,每个结点存储一个区间(注意这里的存储区间并不是指存储这个区间里面所有的元素,而是只需要存储区间的左右端点即可),所有叶子结点表示的是单位区间(即左右端点相等的区间),所有非叶子结点(内部结点)都有左右两棵子树,对于所有非叶子结点,它表示的区间为[l, r],那么令mid为(l + r)/2的下整,则它的左儿子表示的区间为[l, mid],右儿子表示的区间为[mid+1, r]。基于这个特性,这种二叉树的内部结点,一定有两个儿子结点,不会存在有左儿子但是没有右儿子的情况。

基于这种结构,叶子结点保存一个对应原始数组下标的值,由于树是一个递归结构,两个子结点的区间并正好是父结点的区间,可以通过自底向上的计算在每个结点都计算出当前区间的最大值。

需要注意的是,基于线段树的二分性质,所以它是一棵平衡树,树的高度为log(n)。

2、数据域
了解线段树的基本结构以后,看看每个结点的数据域,即需要存储哪些信息。

首先,既然线段树的每个结点表示的是一个区间,那么必须知道这个结点管辖的是哪个区间,所以其中最重要的数据域就是区间左右端点[l, r]。然而有时候为了节省全局空间,往往不会将区间端点存储在结点中,而是通过递归的传参进行传递,实时获取。

再者,以区间最大值为例,每个结点除了需要知道所管辖的区间范围[l, r]以外,还需要存储一个当前区间内的最大值max。

56c3550f96dee43f8b892feaOsf2HT94
图二-2-1

以数组A[1:6] = [1 7 2 5 6 3]为例,建立如图二-2-1的线段树,叶子结点的max域为数组对应下标的元素值,非叶子结点的max域则通过自底向上的计算由两个儿子结点的max域比较得出。这是一棵初始的线段树,接下来讨论下线段树的询问和更新操作。

在询问某个区间的最大值时,我们一定可以将这个区间拆分成log(n)个子区间,并且这些子区间一定都能在线段树的结点上找到(这一点下文会着重讲解),然后只要比较这些结点的max域,就能得出原区间的最大值了,因为子区间数量为log(n),所以时间复杂度是O( log(n) )。

更新数组某个元素的值时我们首先修改对应的叶子结点的max域,然后修改它的父结点的max域,以及祖先结点的max域,换言之,修改的只是线段树的叶子结点到根结点的某一条路径上的max域,又因为树高是log(n),所以这一步操作的时间复杂度也是log(n)的。

3、指针表示
接下来讨论一下结点的表示法,每个结点可以看成是一个结构体指针,由数据域和指针域组成,其中指针域有两个,分别为左儿子指针和右儿子指针,分别指向左右子树;数据域存储对应数据,根据情况而定(如果是求区间最值,就存最值max;求区间和就存和sum),这样就可以利用指针从根结点进行深度优先遍历了。

以下是简单的线段树结点的C++结构体:

4、数组表示
实际计算过程中,还有一种更加方便的表示方法,就是基于数组的静态表示法,需要一个全局的结构体数组,每个结点对应数组中的一个元素,利用下标索引。

例如,假设某个结点在数组中下标为p,那么它的左儿子结点的下标就是2*p,右儿子结点的下标就是2*p+1(类似于一般数据结构书上说的堆在数组中的编号方式),这样可以将所有的线段树结点存储在相对连续的空间内。之所以说是相对连续的空间,是因为有些下标可能永远用不到。

还是以长度为6的数组为例,如图二-4-1所示,红色数字表示结点对应的数组下标,由于树的结构和编号方式,导致数组的第10、11位置空缺。

56c355485e6027d1d84aca38ysFGSkUW
图二-4-1

这种存储方式可以不用存子结点指针,取而代之的是当前结点的数组下标索引,以下是数组存储方式的线段树结点的C++结构体:

接下来我们关心的就是MAXNODES的取值了,由于线段树是一种二叉树,所以当区间长度为2的幂时,它正好是一棵满二叉树,数组存储的利用率达到最高(即100%),根据等比数列求和可以得出,满二叉树的结点个数为2*n-1,其中n为区间长度(由于C++中数组长度从0计数,编号从1开始,所以MAXNODES要取2*n)。那么是否对于所有的区间长度n都满足这个公式呢?答案是否定的,当区间长度为6时,最大的结点编号为13,而公式算出来的是12(2*6)。

那么 MAXNODES 取多少合适呢?

为了保险起见,我们可以先找到比n大的最小的二次幂,然后再套用等比数列求和公式,这样就万无一失了。举个例子,当区间长度为6时,MAXNODES = 2 * 8;当区间长度为1000,则MAXNODES = 2 * 1024;当区间长度为10000,MAXNODES = 2 * 16384。至于为什么可以这样,明眼人一看便知。

三、线段树的基本操作
线段树的基本操作包括构造、更新、询问,都是深度优先搜索的过程。

1、构造
线段树的构造是一个二分递归的过程,封装好了之后代码非常简洁,总体思路就是从区间[1, n]开始拆分,拆分方式为二分的形式,将左半区间分配给左子树,右半区间分配给右子树,继续递归构造左右子树。
当区间拆分到单位区间时(即遍历到了线段树的叶子结点),则执行回溯。回溯时对于任何一个非叶子结点需要根据两棵子树的情况进行统计,计算当前结点的数据域,详见注释4。

注释1:初始化第p个结点的数据域,根据实际情况实现reset函数
注释2:递归构造左子树
注释3:递归构造右子树
注释4:回溯,利用左右子树的信息来更新当前结点,updateFromSon这个函数的实现需要根据实际情况进行求解,在第四节会详细讨

构造线段树的调用如下:segtree_build(1, 1, n);

2、更新
线段树的更新是指更新数组在[x, y]区间的值,具体更新这件事情是做了什么要根据具体情况而定,可以是将[x, y]区间的值都变成val(覆盖),也可以是将[x, y]区间的值都加上val(累加)。

更新过程采用二分,将[1, n]区间不断拆分成一个个子区间[l, r],当更新区间[x, y]完全覆盖被拆分的区间[l, r]时,则更新管辖[l, r]区间的结点的数据域,详见注释2和注释3。

注释1:区间[l, r]和区间[x, y]无交集,直接返回
注释2:区间[x, y]完全覆盖[l, r]
注释3:更新第p个结点的数据域,updateByValue这个函数的实现需要根据具体情况而定,会在第四节进行详细讨论
注释4:这里先卖个关子,参见第五节的lazy-tag
注释5:递归更新左子树
注释6:递归更新右子树
注释7:回溯,利用左右子树的信息来更新当前结点

更新区间[x, y]的值为val的调用如下:segtree_insert(1, 1, n, x, y, val);

3、询问
线段树的询问和更新类似,大部分代码都是一样的,只有红色部分是不同的,同样是将大区间[1, n]拆分成一个个小区间[l, r],这里需要存储一个询问得到的结果ans,当询问区间[x, y]完全覆盖被拆分的区间[l, r]时,则用管辖[l, r]区间的结点的数据域来更新ans,详见注释1的mergeQuery接口。

注释1:更新当前解ans,会在第四节进行详细讨论
注释2:和更新一样的代码,不再累述

四、线段树的经典案例
线段树的用法千奇百怪,接下来介绍几个线段树的经典案例,加深对线段树的理解。

1、区间最值
区间最值是最常见的线段树问题,引例中已经提到。接下来从几个方面来讨论下区间最值是如何运作的。
数据域:

初始化:

单点更新:

合并结点:

回溯统计:

结合上一节线段树的基本操作,在构造线段树的时候,对每个结点执行了一次初始化,初始化同时也是单点更新的过程,然后在回溯的时候统计,统计实质上是合并左右结点的过程,合并结点做的事情就是更新最大值;询问就是将给定区间拆成一个个能够在线段树结点上找到的区间,然后合并这些结点的过程,合并的结果ans一般通过引用进行传参,或者作为全局变量,不过尽量避免使用全局变量。

2、区间求和
区间求和问题一般比区间最值稍稍复杂一点,因为涉及到区间更新和区间询问,如果更新和询问都只遍历到询问(更新)区间完全覆盖结点区间的话,会导致计算遗留,举个例子来说明。

用一个数据域sum来记录线段树结点区间上所有元素的和,初始化所有结点的sum值都为0,然后在区间[1, 4]上给每个元素加上4,如图四-2-1所示:

56c35657143cfa377ecd8727RSOVJ2p3
图四-2-1

图中[1, 4]区间完全覆盖[1, 3]和[4, 4]两个子区间,然后分别将值累加到对应结点的数据域sum上,再通过回溯统计sum和,最后得到[1, 6]区间的sum和为16,看上去貌似天衣无缝,但是实际上操作一多就能看出这样做是有缺陷的。例如当我们要询问[3, 4]区间的元素和时,在线段树结点上得到被完全覆盖的两个子区间[3, 3]和[4, 4],累加区间和为0 + 4 = 4,如图四-2-2所示。

56c35d3396dee41862bdc861jWMocaWf
图四-2-2

这是因为在进行区间更新的时候,由于[1, 4]区间完全覆盖[1, 3]区间,所以我们并没有继续往下遍历,而是直接在[1, 3]这个结点进行sum值的计算,计算完直接回溯。等到下一次访问[3, 3]的时候,它并不知道之前在3号位置上其实是有一个累加值4的,但是如果每次更新都更新到叶子结点,就会使得更新的复杂度变成O(n),违背了使用线段树的初衷,所以这里需要引入一个lazy-tag的概念。

所谓lazy-tag,就是在某个结点打上一个“懒惰标记”,每次更新的时候只要更新区间完全覆盖结点区间,就在这个结点打上一个lazy标记,这个标记的值就是更新的值,表示这个区间上每个元素都有一个待累加值lazy,然后计算这个结点的sum,回溯统计sum。

当下次访问到有lazy标记的结点时,如果还需要往下访问它的子结点,则将它的lazy标记传递给两个子结点,自己的lazy标记置空。

这就是为什么在之前在讲线段树的更新和询问的时候有一个函数叫giveLazyToSon了。接下来看看一些函数的实现。

数据域: