作者: 常明,Java架构师
[请尊重原创,盗版必究,转载请指明出处]
建议有一定工作经验者阅读
通常,为了提高网站响应速度,总是把热点数据保存在内存中而不是直接从后端数据库中读取。Redis是一个很好的Cache工具。大型网站应用,热点数据量往往巨大,几十G上百G是很正常的事儿,在这种情况下,如何正确架构Redis呢?
首先,无论我们是使用自己的物理主机,还是使用云服务主机,内存资源往往是有限制的,scale up不是一个好办法,我们需要scale out横向可伸缩扩展,这需要由多台主机协同提供服务,即分布式多个Redis实例协同运行。
其次,目前硬件资源成本降低,多核CPU,几十G内存的主机很普遍,对于主进程是单线程工作的Redis,只运行一个实例就显得有些浪费。同时,管理一个巨大内存不如管理相对较小的内存高效。因此,实际使用中,通常一台机器上同时跑多个Redis实例。
Redis 3正式推出了官方集群技术,解决了多Redis实例协同服务问题。Redis Cluster可以说是服务端Sharding分片技术的体现,即将键值按照一定算法合理分配到各个实例分片上,同时各个实例节点协调沟通,共同对外承担一致服务。
多Redis实例服务,比单Redis实例要复杂的多,这涉及到定位、协同、容错、扩容等技术难题。这里,我们介绍一种轻量级的客户端Redis Sharding技术。
Redis Sharding可以说是Redis Cluster出来之前,业界普遍使用的多Redis实例集群方法。其主要思想是采用哈希算法将Redis数据的key进行散列,通过hash函数,特定的key会映射到特定的Redis节点上。这样,客户端就知道该向哪个Redis节点操作数据。Sharding架构如图:
庆幸的是,java redis客户端驱动jedis,已支持Redis Sharding功能,即ShardedJedis以及结合缓存池的ShardedJedisPool。
Jedis的Redis Sharding实现具有如下特点:
2.为了避免一致性哈希只影响相邻节点造成节点分配压力,ShardedJedis会对每个Redis节点根据名字(没有,Jedis会赋予缺省名字)会虚拟化出160个虚拟节点进行散列。根据权重weight,也可虚拟化出160倍数的虚拟节点。用虚拟节点做映射匹配,可以在增加或减少Redis节点时,key在各Redis节点移动再分配更均匀,而不是只有相邻节点受影响。
3.ShardedJedis支持keyTagPattern模式,即抽取key的一部分keyTag做sharding,这样通过合理命名key,可以将一组相关联的key放入同一个Redis节点,这在避免跨节点访问相关数据时很重要。
下面我们用Jedis实际操作下:
1.pom.xml中配置jedis jar包
<dependency>
<groupId>redis.clients</groupId>
<artifactId>jedis</artifactId>
<version>2.7.2</version>
</dependency>
2.spring配置文件中配置ShardedJedisPool
<bean id="poolConfig" class="redis.clients.jedis.JedisPoolConfig">
<property name="maxTotal" value="4096"/>
<property name="maxIdle" value="200"/>
<property name="maxWaitMillis" value="3000"/>
<property name="testOnBorrow" value="true" />
<property name="testOnReturn" value="true" />
</bean>
<bean id = "shardedJedisPool" class = "redis.clients.jedis.ShardedJedisPool">
<constructor-arg index="0" ref="poolConfig"/>
<constructor-arg index="1">
<list>
<bean class="redis.clients.jedis.JedisShardInfo">
<constructor-arg index="0" value="192.168.1.119" type="String"/>
<!-- shard name -->
<constructor-arg index="1" value="Shard-1" type="String"/>
<constructor-arg index="2" value="6379" type="int"/>
<!-- timeout,default is 2 sec -->
<constructor-arg index="3" value="2000" type="int"/>
<!-- weight,default is 1 -->
<constructor-arg index="4" value="1" type="int"/>
</bean>
<bean class="redis.clients.jedis.JedisShardInfo">
<constructor-arg index="0" value="192.168.1.119" type="String"/>
<constructor-arg index="1" value="Shard-2" type="String"/>
<constructor-arg index="2" value="6479" type="int"/>
<constructor-arg index="3" value="2000" type="int"/>
<constructor-arg index="4" value="1" type="int"/>
</bean>
<bean class="redis.clients.jedis.JedisShardInfo">
<constructor-arg index="0" value="192.168.1.119" type="String"/>
<constructor-arg index="1" value="Shard-3" type="String"/>
<constructor-arg index="2" value="6579" type="int"/>
<constructor-arg index="3" value="2000" type="int"/>
<constructor-arg index="4" value="1" type="int"/>
</bean>
<bean class="redis.clients.jedis.JedisShardInfo">
<constructor-arg index="0" value="192.168.1.119" type="String"/>
<constructor-arg index="1" value="Shard-4" type="String"/>
<constructor-arg index="2" value="6679" type="int"/>
<constructor-arg index="3" value="2000" type="int"/>
<constructor-arg index="4" value="2" type="int"/>
</bean>
</list>
</constructor-arg>
</bean>
3.编写测试代码
@Test
public void basicOpTestForSharded(){
ShardedJedis jedis = shardedJedisPool.getResource();
long begin = System.currentTimeMillis();
for(int i=0;i<10000; i++){
jedis.set("person." + i + ".name", "frank");
jedis.set("person." + i + ".city", "beijing");
String name = jedis.get("person." + i + ".name");
String city = jedis.get("person." + i + ".city");
assertEquals("frank",name);
assertEquals("beijing",city);
jedis.del("person." + i + ".name");
Boolean result = jedis.exists("person." + i + ".name");
assertEquals(false,result);
result = jedis.exists("person." + i + ".city");
assertEquals(true,result);
}
long end = System.currentTimeMillis();
for(Jedis myJedis: jedis.getAllShards()){
System.out.println("redis shard: " +
myJedis.getClient().getHost() + ":" + myJedis.getClient().getPort());
System.out.println("redis shard size: " + myJedis.dbSize());
}
System.out.println("total time: " + (end-begin)/1000);
jedis.close();
}
4.运行代码结果
可以看到,最终的10000个键值,被合理分配到四个Redis实例中,由于Shard-4的weight权重是其它三个的1倍,我们看到,分配给Shard-4节点的键值数也大致是其它三个的1倍,整个键值数比例基本符合1:1:1:2。
Redis Sharding采用客户端Sharding方式,服务端Redis还是一个个相对独立的Redis实例节点,没有做任何变动。同时,我们也不需要增加额外的中间处理组件,这是一种非常轻量、灵活的Redis多实例集群方法。
当然,Redis Sharding这种轻量灵活方式必然在集群其它能力方面做出妥协。比如扩容,当想要增加Redis节点时,尽管采用一致性哈希,毕竟还是会有key匹配不到而丢失,这时需要键值迁移。
作为轻量级客户端sharding,处理Redis键值迁移是不现实的,这就要求应用层面允许Redis中数据丢失或从后端数据库重新加载数据。但有些时候,击穿缓存层,直接访问数据库层,会对系统访问造成很大压力。有没有其它手段改善这种情况?
Redis作者给出了一个比较讨巧的办法--presharding,即预先根据系统规模尽量部署好多个Redis实例,这些实例占用系统资源很小,一台物理机可部署多个,让他们都参与sharding,当需要扩容时,选中一个实例作为主节点,新加入的Redis节点作为从节点进行数据复制。数据同步后,修改sharding配置,让指向原实例的Shard指向新机器上扩容后的Redis节点,同时调整新Redis节点为主节点,原实例可不再使用。
presharding是预先分配好足够的分片,扩容时只是将属于某一分片的原Redis实例替换成新的容量更大的Redis实例。参与sharding的分片没有改变,所以也就不存在key值从一个区转移到另一个分片区的现象,只是将属于同分片区的键值从原Redis实例同步到新Redis实例。
并不是只有增删Redis节点引起键值丢失问题,更大的障碍来自Redis节点突然宕机。在《Redis持久化》一文中已提到,为不影响Redis性能,尽量不开启AOF和RDB文件保存功能,可架构Redis主备模式,主Redis宕机,数据不会丢失,备Redis留有备份。
这样,我们的架构模式变成一个Redis节点切片包含一个主Redis和一个备Redis。在主Redis宕机时,备Redis接管过来,上升为主Redis,继续提供服务。主备共同组成一个Redis节点,通过自动故障转移,保证了节点的高可用性。则Sharding架构演变成:
Redis Sentinel提供了主备模式下Redis监控、故障转移功能达到系统的高可用性。下面我们搭建一主一从并利用Sentinel进行监控。
1.搭建主从架构,一主一从
主端口号是6379,从端口号是6479,此步略,参看redis持久性一文。
2.构建Sentinel系统
Redis Sentinel其实也是Redis,只不过是以Sentinel模式启动。在Sentinel模式下,Redis只接受有限的几个命令,主要是监控Redis实例是否发生故障,在主Redis发生故障的前提下,进行故障转移,在可用从Redis实例中挑选一个上升为主Redis,同时其它从Redis的主Redis重定向到这个新的主Redis。原有故障的主Redis如重新上线,也会降级为从Redis,指向新的主Redis。
这样看来,Sentinel又成为一个关键的节点,如果Sentinel节点发生故障,那整个HA高可用将变成不可用,故通常情况下,Sentinel本身是处于集群状态的。
多个Sentinel实例集群,那由谁执行故障转移呢?这需要选举一个Sentinel作为主Sentinel,如果一半以上同意,这个Sentinel将选举为主Sentinel负责执行故障转移操作。故一般Sentinel集群为单数,如3个,2个Sentinel集群是无效的。
在本例中,我们只搭建一个Sentinel实例作为监控节点。
Sentinel启动需要指定配置文件,我们来看下sentinel.conf中几个主要参数:
port 26379 监控系统端口号
sentinel monitor Shard-1 192.168.1.146 6379 1 监控名为Shard-1的节点,且其主Redis的IP是192.168.1.146,端口号为6379,同时有1个Sentinel认为其下线,那此主Redis就认为是有效的客观下线状态,需要执行故障转移。
sentinel down-after-milliseconds Shard-1 30000 sentinel实时监控主Redis,如发现30秒没反应,则主观认为其已下线。
sentinel parallel-syncs Shard-1 1 故障转移,从Redis重新同时指向新主Redis的个数。
sentinel failover-timeout Shard-1 180000 故障转移超时判定,缺省3分钟
如下命令启动sentinel:
redis-sentinel /etc/sentinel.conf >> /var/log/sentinel.log &
查看sentinel.log,日志如图:
3.故障转移测试
我们试着shutdown掉主Redis,看看sentinel和从redis反应:
我们看到,Shard-1的主Redis从6379这个实例转到了6479这个实例
可以看到,6479这个Redis实例由从升级到主,系统完成了自动故障转移。
我们再重新启动6379原主Redis, 查看日志:
此时,这个Redis已降级为从Redis,同步6479主Redis。
Jedis提供了JedisSentinelPool类可以访问Sentinel监控的主从Redis组成的节点。在我们的架构方案中,它只是作为一个分片节点如Shard-1存在。Jedis并没有提供分片节点是主从模式下的驱动,好在Jedis是开源产品,我们可以根据JedisSentinelPool主逻辑方式得到各分片的最新主Redis信息,这就组成了ShardedJedisPool所需要的JedisShardInfo列表参数,然后按照JedisSentinelPool重新初始化pool的方式重新初始化ShardedJedisPool中的pool。
高访问量下,即使采用Sharding分片,一个单独节点还是承担了很大的访问压力,这时我们还需要进一步分解。通常情况下,应用访问Redis读操作量和写操作量差异很大,读常常是写的数倍,这时我们可以将读写分离,而且读提供更多的实例数。
可以利用主从模式实现读写分离,主负责写,从负责只读,同时一主挂多个从。在Sentinel监控下,还可以保障节点故障的自动监测。这时,上述sharding架构下每个单节点进一步演化为一主多从。如下:
同样,Jedis没有提供Sharding状态下一主多从节点的访问驱动,我们还是根据ShardedJedisPool和JedisSentinelPool源码实现机理做相应改造,从sentinel那里得到可用从redis实例信息,并将读相关操作按照一定算法合理分配到这些可用从Redis节点,分担主节点压力。
2025 - 快车库 - 我的知识库 重庆启连科技有限公司 渝ICP备16002641号-10
企客连连 表单助手 企服开发 榜单123