Container With Most Water
Given n non-negative integers a1, a2, ..., an, where each represents a point at coordinate (i, ai). n vertical lines are drawn such that the two endpoints of line i is at (i, ai) and (i, 0). Find two lines, which together with x-axis forms a container, such that the container
contains the most water.Note: You may not slant the container.
栈法
复杂度
时间 O(N) 空间 O(N)
思路
最大盛水量取决于两边中较短的那条边,而且如果将较短的边换为更短边的话,盛水量只会变少。所以我们可以用两个头尾指针,计算出当前最大的盛水量后,将较短的边向中间移,因为我们想看看能不能把较短的边换长一点。这样一直计算到左边大于右边为止就行了。
注意
如果将较短的边向中间移后,新的边还更短一些,其实可以跳过,减少一些计算量
代码
public class Solution {
public int maxArea(int[] height) {
int left = 0, right = height.length - 1, maxArea = 0;
while(left < right){
// 每次更新最大面积(盛水量)
maxArea = Math.max(maxArea, Math.min(height[left], height[right]) * (right - left));
// 如果左边较低,则将左边向中间移一点
if(height[left] < height[right]){
left++;
// 如果右边较低,则将右边向中间移一点
} else {
right--;
}
}
return maxArea;
}
}