[LintCode] Spiral Matrix I & Spiral Matrix II

578 查看

Spiral Matrix I

Problem

Given a matrix of m x n elements (m rows, n columns), return all elements of the matrix in spiral order.

Example

Given the following matrix:

[
 [ 1, 2, 3 ],
 [ 4, 5, 6 ],
 [ 7, 8, 9 ]
]

You should return [1,2,3,6,9,8,7,4,5].

Note

解法很形象,先从左上角开始,从左向右添加第一行的元素,然后到了右上角,从最后一列从上到下,到了右下角,在最后一行从右到左,到了左下角,从第一列从下到上,如此循环。每一圈循环count加一,直到count到了最中间的一行或者最中间的一列,只需进行从左到右或从上到下的操作,然后break
为什么要break?这样做的理由其实很简单,不论行数m还是列数n更大,最后一个循环发生在count*2 == m or n的时候,此时一定只剩下一行或一列要走。也就是说,四个for循环,只走一次。如果不在前两个for循环之后break的话,那么那多余的一行或一列就会被加入res数组两次,造成错误的结果。
要注意,在第一次之后的for循环要避开之前遍历过的点。

Solution

public class Solution {
    public List<Integer> spiralOrder(int[][] matrix) {
        List<Integer> res = new ArrayList<Integer> ();
        if (matrix == null || matrix.length == 0 || matrix[0].length == 0) return res;
        int m = matrix.length;
        int n = matrix[0].length;
        int count = 0;
        while (2*count < m && 2*count < n) {
            for (int i = count; i <= n-1-count; i++) {
                res.add(matrix[count][i]);
            }
            for (int i = count+1; i <= m-1-count; i++) {
                res.add(matrix[i][n-1-count]);
            }
            if (2*count+1 == m || 2*count+1 == n) break;
            for (int i = n-2-count; i >= count; i--) {
                res.add(matrix[m-1-count][i]);
            }
            for (int i = m-2-count; i >= count+1; i--) {
                res.add(matrix[i][count]);
            }
            count++;
        }
        return res;
    }
}

Spiral Matrix II

Problem

Given an integer n, generate a square matrix filled with elements from 1 to n^2 in spiral order.

Example

Given n = 3,

You should return the following matrix:

[
  [ 1, 2, 3 ],
  [ 8, 9, 4 ],
  [ 7, 6, 5 ]
]

Note

解法和Spiral Matrix I一样,只是简化了,甚至可以用一样的方法去做,只要把m也换成n。
使用num++,以及最后讨论n是否为奇数以判断中间是否有一个未循环的点,是这道题的两个有趣的地方。

Solution

public class Solution {
    public int[][] generateMatrix(int n) {
        int num = 1;
        int[][] res = new int[n][n];
        for (int cur = 0; cur < n/2; cur++) {
            for (int j = cur; j < n-1-cur; j++) {
                res[cur][j] = num++;
            }
            for (int i = cur; i < n-1-cur; i++) {
                res[i][n-1-cur] = num++;
            }
            for (int j = n-1-cur; j > cur; j--) {
                res[n-1-cur][j] = num++;
            }
            for (int i = n-1-cur; i > cur; i--) {
                res[i][cur] = num++;
            }
        }
        if (n % 2 != 0) res[n/2][n/2] = num;
        return res;
    }
}