Problem
A message containing letters from A-Z is being encoded to numbers using the following mapping:
'A' -> 1
'B' -> 2
...
'Z' -> 26
Given an encoded message containing digits, determine the total number of ways to decode it.
Example
Given encoded message 12
, it could be decoded as AB
(1 2) or L
(12).
The number of ways decoding 12
is 2
.
Note
用parseInt
将子字符串转化为int
,参见parseInt
和valueOf
的区别;
然后用动规方法:dp[i]
表示字符串s
的前i
位(0
到i-1
)包含decode方法的个数。
若前一位i-2
到当前位i-1
的两位字符串s.substring(i-2, i)
对应的数字lastTwo
在10到26之间,则当前位dp[i]
要加上这两位字符之前一个字符对应的可能性:dp[i-2]
;
若当前位i-1
的字符对应1到9之间的数字(不为0),则当前dp[i]
要加上前一位也就是第i-2
位的可能性:dp[i-1]
。
最后返回对应字符串s
末位的动规结果dp[n]
。
Solution
public class Solution {
public int numDecodings(String s) {
int n = s.length();
if (n == 0) return 0;
int[] dp = new int[n+1];
dp[0] = 1;
dp[1] = s.charAt(0) == '0' ? 0 : 1;
for (int i = 2; i <= n; i++) {
int lastTwo = Integer.parseInt(s.substring(i-2, i));
if (s.charAt(i-1) != '0') dp[i] += dp[i-1];
if (10 <= lastTwo && lastTwo <= 26) dp[i] += dp[i-2];
}
return dp[n];
}
}