承接上篇,serviceManager是怎么被调用的呢?如何为app提供服务支持?怎么衔接的?。这次我打算从最上层开始逐步把脉络屡清楚。
首先,我们在写app的时候需要使用AudioManager这类东西的时候,都要调用context.getSystemService(Context.AUDIO_SERVICE);获取服务。逐层看下代码:
a.activity的getSystemService:
@Override
public Object getSystemService(String name) {
if (getBaseContext() == null) {
throw new IllegalStateException(
"System services not available to Activities before onCreate()");
}
if (WINDOW_SERVICE.equals(name)) {
return mWindowManager;
} else if (SEARCH_SERVICE.equals(name)) {
ensureSearchManager();
return mSearchManager;
}
return super.getSystemService(name);
}
如果是WINDOW_SERVICE或者SEARCH_SERVICE,直接在activity这里就做了处理返回了,否则调用super的同名方法。
b.ContextThemeWrapper的getSystemService:
@Override public Object getSystemService(String name) {
if (LAYOUT_INFLATER_SERVICE.equals(name)) {
if (mInflater == null) {
mInflater = LayoutInflater.from(mBase).cloneInContext(this);
}
return mInflater;
}
return mBase.getSystemService(name);
}
如果是LAYOUT_INFLATER_SERVICE,在这里直接返回,否则调用mBase的同名方法。
mBase是Context类型,那么其实就是ContextImpl。看下:
1363 @Override
1364 public Object getSystemService(String name) {
1365 return SystemServiceRegistry.getSystemService(this, name);
1366 }
SystemServiceRegistry.java:
716 /**
717 * Gets a system service from a given context.
718 */
719 public static Object getSystemService(ContextImpl ctx, String name) {
720 ServiceFetcher<?> fetcher = SYSTEM_SERVICE_FETCHERS.get(name);
721 return fetcher != null ? fetcher.getService(ctx) : null;
722 }
133 private static final HashMap<String, ServiceFetcher<?>> SYSTEM_SERVICE_FETCHERS =
134 new HashMap<String, ServiceFetcher<?>>();
这么逐层看来,你请求的内容在每层都分别回应自己所关心的,如果不关心,交给父类处理,最后会走到SystemServiceRegistry类中,看定义就明白,使用一个hashmap来存储名字和ServiceFetcher的对应关系。那么看到这里大体应该有个了解了,SystemServiceRegistry来维护注册进去的所有服务,当然是其他层级上不关心的。
也同时可以看到责任链的应用,一个请求从上到下会经过很多层,每层都只处理和自己相关的部分,如果没有则交由下层继续传递,如果有直接返回。这种模式的使用其实已经在很多年前就非常广泛了,比如tcp/ip的封包和解包过程,比如windows下的层级调用,再比如android的ui event相应等都采用了类似的思想。不要较真儿说这里是继承那边是调用链什么的,我觉得还是看整体思想为好,不需要拘泥于具体什么什么模式,什么什么规则。
再继续看SystemServiceRegistry这个类,静态类一个,连构造都隐藏了,但不是单例,直接在static中进行了很多服务的注册:
140 static {
141 registerService(Context.ACCESSIBILITY_SERVICE, AccessibilityManager.class,
142 new CachedServiceFetcher<AccessibilityManager>() {
143 @Override
144 public AccessibilityManager createService(ContextImpl ctx) {
145 return AccessibilityManager.getInstance(ctx);
146 }});
147
148 registerService(Context.CAPTIONING_SERVICE, CaptioningManager.class,
149 new CachedServiceFetcher<CaptioningManager>() {
150 @Override
151 public CaptioningManager createService(ContextImpl ctx) {
152 return new CaptioningManager(ctx);
153 }});
154 ......
707 }
这里使用了静态代码块static,在类被加载的时候必然会走这里。
往下看registerService:
732 * Statically registers a system service with the context.
733 * This method must be called during static initialization only.
734 */
735 private static <T> void registerService(String serviceName, Class<T> serviceClass,
736 ServiceFetcher<T> serviceFetcher) {
737 SYSTEM_SERVICE_NAMES.put(serviceClass, serviceName);
738 SYSTEM_SERVICE_FETCHERS.put(serviceName, serviceFetcher);
739 }
只是向两个hashmap中填充了名字和class而已。在这里已经实例化了。
简单看下ServiceFetcher:
741 /**
742 * Base interface for classes that fetch services.
743 * These objects must only be created during static initialization.
744 */
745 static abstract interface ServiceFetcher<T> {
746 T getService(ContextImpl ctx);
747 }
只是个包装interface,根据类型不同提供了3种子类供各个服务使用:
749 /**
750 * Override this class when the system service constructor needs a
751 * ContextImpl and should be cached and retained by that context.
752 */
753 static abstract class CachedServiceFetcher<T> implements ServiceFetcher<T> {
754 private final int mCacheIndex;
755
756 public CachedServiceFetcher() {
757 mCacheIndex = sServiceCacheSize++;
758 }
759
760 @Override
761 @SuppressWarnings("unchecked")
762 public final T getService(ContextImpl ctx) {
763 final Object[] cache = ctx.mServiceCache;
764 synchronized (cache) {
765 // Fetch or create the service.
766 Object service = cache[mCacheIndex];
767 if (service == null) {
768 service = createService(ctx);
769 cache[mCacheIndex] = service;
770 }
771 return (T)service;
772 }
773 }
774
775 public abstract T createService(ContextImpl ctx);
776 }
777
778 /**
779 * Override this class when the system service does not need a ContextImpl
780 * and should be cached and retained process-wide.
781 */
782 static abstract class StaticServiceFetcher<T> implements ServiceFetcher<T> {
783 private T mCachedInstance;
784
785 @Override
786 public final T getService(ContextImpl unused) {
787 synchronized (StaticServiceFetcher.this) {
788 if (mCachedInstance == null) {
789 mCachedInstance = createService();
790 }
791 return mCachedInstance;
792 }
793 }
794
795 public abstract T createService();
796 }
797
798 /**
799 * Like StaticServiceFetcher, creates only one instance of the service per process, but when
800 * creating the service for the first time, passes it the outer context of the creating
801 * component.
802 *
803 * TODO: Is this safe in the case where multiple applications share the same process?
804 * TODO: Delete this once its only user (ConnectivityManager) is known to work well in the
805 * case where multiple application components each have their own ConnectivityManager object.
806 */
807 static abstract class StaticOuterContextServiceFetcher<T> implements ServiceFetcher<T> {
808 private T mCachedInstance;
809
810 @Override
811 public final T getService(ContextImpl ctx) {
812 synchronized (StaticOuterContextServiceFetcher.this) {
813 if (mCachedInstance == null) {
814 mCachedInstance = createService(ctx.getOuterContext());
815 }
816 return mCachedInstance;
817 }
818 }
819
820 public abstract T createService(Context applicationContext);
821 }
822
823}
暂时不深究到底这3种是什么用途,不过都可看到getService内部会走到createService(ctx);中,而这个抽象方法是必须被实现的。然后在static代码块中注册服务的时候都要有选择的去根据这3种类型实现ServiceFetcher,实现createService。那么无论这个服务是单例非单例,或者在创建的时候需要做什么事情,都可以在这个createService中来进行。那么这3类里面又使用了惰性加载,如果缓存有或者单例有就不用走createService,没有的时候就走。
回过头来看,getService最终返回的是一个注册过的服务的实例化对象。
说了这么半天,跟servicemanager有什么关系?其实在于getService的实现上。以AudioManager为例 /frameworks/base/media/java/android/media/AudioManager.java:
655 private static IAudioService getService()
656 {
657 if (sService != null) {
658 return sService;
659 }
660 IBinder b = ServiceManager.getService(Context.AUDIO_SERVICE);
661 sService = IAudioService.Stub.asInterface(b);
662 return sService;
663 }
看到了吧,这里已经开始对ServiceManager的使用了,并且是通过binder来得到的。那么结合之前的分析,ServiceManager是在一个独立的进程中的,那么其他进程要是想通过它拿到Service等操作,就需要借助Binder这个跨进程的通讯方式。再往下看:
/frameworks/base/core/java/android/os/ServiceManager.java:
43 /**
44 * Returns a reference to a service with the given name.
45 *
46 * @param name the name of the service to get
47 * @return a reference to the service, or <code>null</code> if the service doesn't exist
48 */
49 public static IBinder getService(String name) {
50 try {
51 IBinder service = sCache.get(name);
52 if (service != null) {
53 return service;
54 } else {
55 return getIServiceManager().getService(name);
56 }
57 } catch (RemoteException e) {
58 Log.e(TAG, "error in getService", e);
59 }
60 return null;
61 }
简单说:先从缓存中拿,如果没有通过getIServiceManager()去拿,看getIServiceManager:
33 private static IServiceManager getIServiceManager() {
34 if (sServiceManager != null) {
35 return sServiceManager;
36 }
37
38 // Find the service manager
39 sServiceManager = ServiceManagerNative.asInterface(BinderInternal.getContextObject());
40 return sServiceManager;
41 }
单例,然后调用到ServiceManagerNative.asInterface,继续看:
/frameworks/base/core/java/android/os/ServiceManagerNative.java:
33 static public IServiceManager asInterface(IBinder obj)
34 {
35 if (obj == null) {
36 return null;
37 }
38 IServiceManager in =
39 (IServiceManager)obj.queryLocalInterface(descriptor);
40 if (in != null) {
41 return in;
42 }
43
44 return new ServiceManagerProxy(obj);
45 }
通过IBinder对象去查询本地接口,如果没查到需要帮助,就建立一个ServiceManagerProxy。这个代理对象是这样的:
109class ServiceManagerProxy implements IServiceManager {
110 public ServiceManagerProxy(IBinder remote) {
111 mRemote = remote;
112 }
113
114 public IBinder asBinder() {
115 return mRemote;
116 }
117
118 public IBinder getService(String name) throws RemoteException {
119 Parcel data = Parcel.obtain();
120 Parcel reply = Parcel.obtain();
121 data.writeInterfaceToken(IServiceManager.descriptor);
122 data.writeString(name);
123 mRemote.transact(GET_SERVICE_TRANSACTION, data, reply, 0);
124 IBinder binder = reply.readStrongBinder();
125 reply.recycle();
126 data.recycle();
127 return binder;
128 }
129
130 public IBinder checkService(String name) throws RemoteException {
131 Parcel data = Parcel.obtain();
132 Parcel reply = Parcel.obtain();
133 data.writeInterfaceToken(IServiceManager.descriptor);
134 data.writeString(name);
135 mRemote.transact(CHECK_SERVICE_TRANSACTION, data, reply, 0);
136 IBinder binder = reply.readStrongBinder();
137 reply.recycle();
138 data.recycle();
139 return binder;
140 }
141
142 public void addService(String name, IBinder service, boolean allowIsolated)
143 throws RemoteException {
144 Parcel data = Parcel.obtain();
145 Parcel reply = Parcel.obtain();
146 data.writeInterfaceToken(IServiceManager.descriptor);
147 data.writeString(name);
148 data.writeStrongBinder(service);
149 data.writeInt(allowIsolated ? 1 : 0);
150 mRemote.transact(ADD_SERVICE_TRANSACTION, data, reply, 0);
151 reply.recycle();
152 data.recycle();
153 }
154
155 public String[] listServices() throws RemoteException {
156 ArrayList<String> services = new ArrayList<String>();
157 int n = 0;
158 while (true) {
159 Parcel data = Parcel.obtain();
160 Parcel reply = Parcel.obtain();
161 data.writeInterfaceToken(IServiceManager.descriptor);
162 data.writeInt(n);
163 n++;
164 try {
165 boolean res = mRemote.transact(LIST_SERVICES_TRANSACTION, data, reply, 0);
166 if (!res) {
167 break;
168 }
169 } catch (RuntimeException e) {
170 // The result code that is returned by the C++ code can
171 // cause the call to throw an exception back instead of
172 // returning a nice result... so eat it here and go on.
173 break;
174 }
175 services.add(reply.readString());
176 reply.recycle();
177 data.recycle();
178 }
179 String[] array = new String[services.size()];
180 services.toArray(array);
181 return array;
182 }
183
184 public void setPermissionController(IPermissionController controller)
185 throws RemoteException {
186 Parcel data = Parcel.obtain();
187 Parcel reply = Parcel.obtain();
188 data.writeInterfaceToken(IServiceManager.descriptor);
189 data.writeStrongBinder(controller.asBinder());
190 mRemote.transact(SET_PERMISSION_CONTROLLER_TRANSACTION, data, reply, 0);
191 reply.recycle();
192 data.recycle();
193 }
194
195 private IBinder mRemote;
196}
至此,已经开始进入binder的跨进程部分,可以看到其中的getService函数是怎么运作的:
1.建立2个Parcel数据data和reply,一个是入口数据,一个是出口数据;
2.data中写入要获取的service的name;
3.关键:走mRemote的transact函数;
4.读取出口数据;
5.回收资源,返回读取到的binder对象;
够晕吧,这一通调用,但是这部分没办法,实在不好层级总结,只能是一口气跟着调用走下来,然后回过头再看。上面那么多步骤的调用都是为了这最后一步做准备,那么为什么要分为这么多层次呢?任何一个操作系统都是非常复杂的,每个地方都要考虑到很多的扩展性及健壮性,随时可以在某个版本或补丁上去除或扩展出一些内容来。也为了利于多人协作,那么分层的调用能够保证在每一个层级上都有可扩展的余地,再进行修改的时候不至于要动很多代码,动的越少就越不容易出错。因此虽然看着费劲点,但是在此还是要对搞操作系统的以及研究操作系统的人们给予敬意。
最后总结一下,这篇主要说的是从应用层开始与servicemanager衔接的过程,是怎么将servicemanager应用起来的。写这篇的原因也是发现网上这部分的衔接的资料较少,我觉得梳理一下还是有助于理解系统的机制的,难点并不多,只是帮助理解系统的机制,作为参考吧。顺便再说下,如果你的兴趣在于底层,那么不看此文也罢,不过我的建议是不仅要了解各个环节的运作机制,还要在一个更高的角度去看待每个环节的衔接过程,否则可能你费劲心血在底层做了各种优化后发现效率还是上不来,那么往往问题出在衔接过程。当然这么庞大复杂的系统不可能是一个人写的,每个人的能力也各有差别,瓶颈总会有的,但是如果你站的够高,那么架构的角度去理解每个细节及衔接,就能够找出问题所在。不是吗?总之都是个人愚见而已,各位海涵。
下面该说binder的远程通讯机制内部的内容了,下一篇文我会继续的。