小胡子哥 @Barret李靖 给我推荐了一个写算法刷题的地方 leetcode.com,没有 ACM 那么难,但题目很有趣。而且据说这些题目都来源于一些公司的面试题。好吧,解解别人公司的面试题其实很好玩,既能整理思路锻炼能力,又不用担心漏题 ╮(╯▽╰)╭。
长话短说,让我们来看一道题:
统计“1”的个数
给定一个非负整数 num,对于任意 i,0 ≤ i ≤ num,计算 i 的值对应的二进制数中 “1” 的个数,将这些结果返回为一个数组。
例如:
当 num = 5 时,返回值为 [0,1,1,2,1,2]。
1 2 3 4 5 6 7 |
/** * @param {number} num * @return {number[]} */ var countBits = function(num) { //在此处实现代码 }; |
解题思路
这道题咋一看还挺简单的,无非是:
- 实现一个方法
countBit
,对任意非负整数 n,计算它的二进制数中“1”的个数 - 循环 i 从 0 到 num,求
countBit(i)
,将值放在数组中返回。
JavaScript中,计算 countBit
可以取巧:
1 2 3 |
function countBit(n){ return n.toString(2).replace(/0/g,"").length; } |
上面的代码里,我们直接对 n 用 toString(2) 转成二进制表示的字符串,然后去掉其中的0,剩下的就是“1”的个数。
然后,我们写一下完整的程序:
1 2 3 4 5 6 7 8 9 10 11 |
function countBit(n){ return n.toString(2).replace(/0/g,'').length; } function countBits(nums){ var ret = []; for(var i = 0; i <= nums; i++){ ret.push(countBit(i)); } return ret; } |
上面这种写法十分讨巧,好处是 countBit
利用 JavaScript 语言特性实现得十分简洁,坏处是如果将来要将它改写成其他语言的版本,就有可能懵B了,它不是很通用,而且它的性能还取决于 Number.prototype.toString(2) 和 String.prototype.replace 的实现。
所以为了追求更好的写法,我们有必要考虑一下 countBit
的通用实现法。
我们说,求一个整数的二进制表示中 “1” 的个数,最普通的当然是一个 O(logN) 的方法:
1 2 3 4 5 6 7 8 |
function countBit(n){ var ret = 0; while(n > 0){ ret += n & 1; n >>= 1; } return ret; } |
所以我们有了版本2
这么实现也很简洁不是吗?但是这么实现是否最优?建议此处思考10秒钟再往下看。
更快的 countBit
上一个版本的 countBit
的时间复杂度已经是 O(logN) 了,难道还可以更快吗?当然是可以的,我们不需要去判断每一位是不是“1”,也能知道 n 的二进制中有几个“1”。
有一个诀窍,是基于以下一个定律:
- 对于任意 n, n ≥ 1,有如下等式成立:
1 |
countBit(n & (n - 1)) === countBit(n) - 1 |
这个很容易理解,大家只要想一下,对于任意 n,n – 1 的二进制数表示正好是 n 的二进制数的最末一个“1”退位,因此 n & n – 1 正好将 n 的最末一位“1”消去,例如:
- 6 的二进制数是 110, 5 = 6 – 1 的二进制数是 101,
6 & 5
的二进制数是110 & 101 == 100
- 88 的二进制数是 1011000,87 = 88 – 1 的二进制数是 1010111,
88 & 87 的二进制数是 1011000 & 1010111 == 1010000
于是,我们有了一个更快的算法:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 |
function countBit(n){ var ret = 0; while(n > 0){ ret++; n &= n - 1; } return ret; } function countBits(nums){ var ret = []; for(var i = 0; i <= nums; i++){ ret.push(countBit(i)); } return ret; } |
上面的 countBit(88)
只循环 3 次,而“版本2”的 countBit(88)
却需要循环 7 次。
优化到了这个程度,是不是一切都结束了呢?从算法上来说似乎已经是极致了?真的吗?再给大家 30 秒时间思考一下,然后再往下看。
countBits 的时间复杂度
考虑 countBits
, 上面的算法:
- “版本1” 的时间复杂度是 O(N*M),M 取决于 Number.prototype.toString 和 String.prototype.replace 的复杂度。
- “版本2” 的时间复杂度是 O(N*logN)
- “版本3” 的时间复杂度是 O(N*M),M 是 N 的二进制数中的“1”的个数,介于 1 ~ logN 之间。
上面三个版本的 countBits
的时间复杂度都大于 O(N)。那么有没有时间复杂度 O(N) 的算法呢?
实际上,“版本3”已经为我们提示了答案,答案就在上面的那个定律里,我把那个等式再写一遍:
1 |
countBit(n & (n - 1)) === countBit(n) - 1 |
也就是说,如果我们知道了 countBit(n & (n - 1))
,那么我们也就知道了 countBit(n)
!
而我们知道 countBit(0)
的值是 0,于是,我们可以很简单的递推:
1 2 3 4 5 6 7 |
function countBits(nums){ var ret = [0]; for(var i = 1; i <= nums; i++){ ret.push(ret[i & i - 1] + 1); } return ret; } |
原来就这么简单,你想到了吗 ╮(╯▽╰)╭
以上就是所有的内容,简单的题目思考起来很有意思吧?程序员就应该追求完美的算法,不是吗?
这是 leetcode 算法面试题系列的第一期,下一期我们讨论另外一道题,这道题也很有趣:判断一个非负整数是否是 4 的整数次方,别告诉我你用循环,想想更巧妙的办法吧~