上个星期, 我的两个朋友 Dean 和 Bill 分别告诉我说他们对 Google 的快速高质量的拼写检查工具感到惊奇. 比如说在搜索的时候键入 [speling], 在不到 0.1 秒的时间内, Google 会返回: 你要找的是不是 [spelling]. (Yahoo! 和 微软也有类似的功能). 让我感到有点奇怪的是我原想 Dean 和 Bill 这两个很牛的工程师和数学家应该对于使用统计语言模型构建拼写检查器有职业的敏感. 但是他们似乎没有这个想法. 我后来想了想, 他们的确没什么理由很熟悉统计语言模型. 不是他们的知识有问题, 而是我预想的本来就是不对的.
我觉得, 如果对这方面的工作做个解释, 他们和其他人肯定会受益. 然而像Google 的那样工业强度的拼写检查器的全部细节只会让人感到迷惑而不是受到启迪. 前几天我乘飞机回家的时候, 顺便写了几十行程序, 作为一个玩具性质的拼写检查器. 这个拼写检查器大约1秒能处理10多个单词, 并且达到 80% -90% 的准确率. 下面就是我的代码, 用Python 2.5 写成, 一共21 行, 是一个功能完备的拼写检查器.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 |
import re, collections def words(text): return re.findall('[a-z]+', text.lower()) def train(features): model = collections.defaultdict(lambda: 1) for f in features: model[f] += 1 return model NWORDS = train(words(file('big.txt').read())) alphabet = 'abcdefghijklmnopqrstuvwxyz' def edits1(word): n = len(word) return set([word[0:i]+word[i+1:] for i in range(n)] + # deletion [word[0:i]+word[i+1]+word[i]+word[i+2:] for i in range(n-1)] + # transposition [word[0:i]+c+word[i+1:] for i in range(n) for c in alphabet] + # alteration [word[0:i]+c+word[i:] for i in range(n+1) for c in alphabet]) # insertion def known_edits2(word): return set(e2 for e1 in edits1(word) for e2 in edits1(e1) if e2 in NWORDS) def known(words): return set(w for w in words if w in NWORDS) def correct(word): candidates = known([word]) or known(edits1(word)) or known_edits2(word) or [word] return max(candidates, key=lambda w: NWORDS[w]) |
这段代码定义了一个函数叫 correct, 它以一个单词作为输入参数, 返回最可能的拼写建议结果. 比如说:
1 2 3 4 |
>>> correct('speling') 'spelling' >>> correct('korrecter') 'corrector' |
拼写检查器的原理, 一些简单的概率知识
我简单的介绍一下它的工作原理. 给定一个单词, 我们的任务是选择和它最相似的拼写正确的单词. (如果这个单词本身拼写就是正确的, 那么最相近的就是它自己啦). 当然, 不可能绝对的找到相近的单词, 比如说给定 lates 这个单词, 它应该别更正为 late 呢 还是 latest 呢? 这些困难指示我们, 需要使用概率论, 而不是基于规则的判断. 我们说, 给定一个词 w, 在所有正确的拼写词中, 我们想要找一个正确的词 c, 使得对于 w 的条件概率最大, 也就是说:
argmaxc P(c|w)
按照 贝叶斯理论 上面的式子等价于:
argmaxc P(w|c) P(c) / P(w)
因为用户可以输错任何词, 因此对于任何 c 来讲, 出现 w 的概率 P(w) 都是一样的, 从而我们在上式中忽略它, 写成:
argmaxc P(w|c) P(c)
这个式子有三个部分, 从右到左, 分别是:
1. P(c), 文章中出现一个正确拼写词 c 的概率, 也就是说, 在英语文章中, c 出现的概率有多大呢? 因为这个概率完全由英语这种语言决定, 我们称之为做语言模型. 好比说, 英语中出现 the 的概率 P(‘the’) 就相对高, 而出现 P(‘zxzxzxzyy’) 的概率接近0(假设后者也是一个词的话).
2. P(w|c), 在用户想键入 c 的情况下敲成 w 的概率. 因为这个是代表用户会以多大的概率把 c 敲错成 w, 因此这个被称为误 差模型.
3. argmaxc, 用来枚举所有可能的 c 并且选取概率最大的, 因为我们有理由相信, 一个(正确的)单词出现的频率高, 用户又容易把它敲成另一个错误的单词, 那么, 那个敲错的单词应该被更正为这个正确的.
有人肯定要问, 你笨啊, 为什么把最简单的一个 P(c|w) 变成两项复杂的式子来计算? 答案是本质上 P(c|w) 就是和这两项同时相关的, 因此拆成两项反而容易处理. 举个例子, 比如一个单词 thew 拼错了. 看上去 thaw 应该是正确的, 因为就是把 a 打成 e 了. 然而, 也有可能用户想要的是 the, 因为 the 是英语中常见的一个词, 并且很有可能打字时候手不小心从 e 滑到 w 了. 因此, 在这种情况下, 我们想要计算 P(c|w), 就必须同时考虑 c 出现的概率和从 c 到 w 的概率. 把一项拆成两项反而让这个问题更加容易更加清晰.
现在, 让我们看看程序究竟是怎么一回事. 首先是计算 P(c), 我们可以读入一个巨大的文本文件, big.txt, 这个里面大约有几百万个词(相当于是语料库了). 这个文件是由Gutenberg 计划 中可以获取的一些书, Wiktionary 和 British National Corpus 语料库构成. (当时在飞机上我只有福尔摩斯全集, 我后来又加入了一些, 直到效果不再显著提高为止).
然后, 我们利用一个叫 words 的函数把语料中的单词全部抽取出来, 转成小写, 并且去除单词中间的特殊符号. 这样, 单词就会成为字母序列, don’t 就变成 don 和 t 了.1 接着我们训练一个概率模型, 别被这个术语吓倒, 实际上就是数一数每个单词出现几次. 在 train 函数中, 我们就做这个事情.
1 2 3 4 5 6 7 8 9 |
def words(text): return re.findall 秒的时间内, Google 会返回: 你要找的是不是 [spelling]. (Yahoo! 和 微软也有类似的功能). 让我感到有点奇怪的是我原想 Dean 和 Bill 这两个很牛的工程师和数学家应该对于使用统计语言模型构建拼写检查器有职业的敏感. 但是他们似乎没有这个想法. 我后来想了想, 他们的确没什么理由很熟悉统计语言模型. 不是他们的知识有问题, 而是我预想的本来就是不对的.
我觉得, 如果对这方面的工作做个解释, 他们和其他人肯定会受益. 然而像Google 的那样工业强度的拼写检查器的全部细节只会让人感到迷惑而不是受到启迪. 前几天我乘飞机回家的时候, 顺便写了几十行程序, 作为一个玩具性质的拼写检查器. 这个拼写检查器大约1秒能处理10多个单词, 并且达到 80% -90% 的准确率. 下面就是我的代码, 用Python 2.5 写成, 一共21 行, 是一个功能完备的拼写检查器.
这段代码定义了一个函数叫 correct, 它以一个单词作为输入参数, 返回最可能的拼写建议结果. 比如说:
拼写检查器的原理, 一些简单的概率知识我简单的介绍一下它的工作原理. 给定一个单词, 我们的任务是选择和它最相似的拼写正确的单词. (如果这个单词本身拼写就是正确的, 那么最相近的就是它自己啦). 当然, 不可能绝对的找到相近的单词, 比如说给定 lates 这个单词, 它应该别更正为 late 呢 还是 latest 呢? 这些困难指示我们, 需要使用概率论, 而不是基于规则的判断. 我们说, 给定一个词 w, 在所有正确的拼写词中, 我们想要找一个正确的词 c, 使得对于 w 的条件概率最大, 也就是说:
按照 贝叶斯理论 上面的式子等价于:
因为用户可以输错任何词, 因此对于任何 c 来讲, 出现 w 的概率 P(w) 都是一样的, 从而我们在上式中忽略它, 写成:
这个式子有三个部分, 从右到左, 分别是:
有人肯定要问, 你笨啊, 为什么把最简单的一个 P(c|w) 变成两项复杂的式子来计算? 答案是本质上 P(c|w) 就是和这两项同时相关的, 因此拆成两项反而容易处理. 举个例子, 比如一个单词 thew 拼错了. 看上去 thaw 应该是正确的, 因为就是把 a 打成 e 了. 然而, 也有可能用户想要的是 the, 因为 the 是英语中常见的一个词, 并且很有可能打字时候手不小心从 e 滑到 w 了. 因此, 在这种情况下, 我们想要计算 P(c|w), 就必须同时考虑 c 出现的概率和从 c 到 w 的概率. 把一项拆成两项反而让这个问题更加容易更加清晰. 现在, 让我们看看程序究竟是怎么一回事. 首先是计算 P(c), 我们可以读入一个巨大的文本文件, big.txt, 这个里面大约有几百万个词(相当于是语料库了). 这个文件是由Gutenberg 计划 中可以获取的一些书, Wiktionary 和 British National Corpus 语料库构成. (当时在飞机上我只有福尔摩斯全集, 我后来又加入了一些, 直到效果不再显著提高为止). 然后, 我们利用一个叫 words 的函数把语料中的单词全部抽取出来, 转成小写, 并且去除单词中间的特殊符号. 这样, 单词就会成为字母序列, don’t 就变成 don 和 t 了.1 接着我们训练一个概率模型, 别被这个术语吓倒, 实际上就是数一数每个单词出现几次. 在 train 函数中, 我们就做这个事情.
|