由用户输入系列对称的点的解决方案

755 查看

需求

由用户输入一系列对称的点,对称轴未知。

需求分析

对称的点包括对称点和对称轴上的点。可以先要求用户(图形化)输入成对的对称点,程序计算出对称轴后,再由用户输入轴上的点,并将点修正到轴上。

实际上计算对称轴的过程是对对称点中垂线求平均。但是要注意的是,输入点的误差是一个恒定值,以真实点为中心,越远概率越小。因此两对称点的连线的误差跟连线长度负相关。

而对用户输入的点的修正,其实是计算点到直线的垂足坐标,是一个简单的的解析几何问题。

解决方案

第一步,通过用户输入的对称点解出对称轴

算法思路

计算出对称轴的基本思路分为两步,先通过输入的对称点的连线计算对称轴的斜率;然后计算在这个斜率下使得对称点中点距该线距离最小时的截距。

对称轴斜率的计算

斜率的计算需要先计算对称点的方向向量,再计算与该方向向量垂直的向量,即为对称轴的方向向量。求解如下:

11

为了计算方便,确保方向向量为正值,令x = 1

22

正常情况下,这时候斜率就应该是-x'/y'。然而本例中有多个对称点,需要用连线长度做权,对倾角求加权平均。注意,是倾角而非斜率做加权平均,所以我们要转换为倾角:

tanα

33

值得注意的是,当y_1' = y_1 即 y' = 0 时,会出现0做除数的情况。

因为 arctanx的定义域为(-∞, +∞), 值域为(-π/2, π/2)

arctan-s.png

而倾角的有效范围是[0,π),所以需要一次转换。

3

因为∠β∠γ角度上相等,所以∠β要转换成线的倾角,即∠γ的补角,因∠β为负数,只需要对计算出的倾角为负的值加上π即可。

(之所以要将倾角归到[0,π),是因为要求平均角度。如果直接求∠α∠β平均角度的话,会得到。而我们想得到的是90°,所以必须要用∠γ的补角取平均。)

计算对称轴的斜率k

44

对称轴截距的计算

因为对于恒定的斜率,点到直线的距离和点在y方向上到直线的距离是成正比的,即a = k·b

结论3.png

因此要计算恒定斜率下,与若干点距离(a)最短的直线。和求若干点在y方向距离(b)最短的直线是等价的。

只需要假定截距为0,计算各个点的y值与直线上相应y值之差,再求平均值即为截距。

555

代码

很多计算是由numpy的矩阵计算完成的,因此代码比较简单

代码中self.rawData['symmMark']是用户输入的对称点的数据,数据结构为一个一维数组, x 坐标 y 坐标依次排列。
A1(x1, y1) A'1(x'1, y'1)是第一对对称点,A2(x2, y2) A'2(x'2, y'2)是第二对对称点。其保存在self.rawData['symmMark']中的形式为: [x1, y1, x'1, y'1, x2, y2, x'2, y'2]

第二步,将接下来用户输入的点投射到对称轴上

设输入点为C(x1, y1), 对称轴为 y = a x + b

设垂直于对称轴,通过点C的直线斜率为k 则有 k · a = -1

于是直线方程为: y - y1 = - 1/a (x - x1)

化为斜截式: y = -1/a x + x1/a + y1

与对称轴方程联立解得交点x坐标为

6666

带入对称轴方程可得y坐标

代码

结果展示

标记数字相同的圆圈为鼠标点击输入一对对称点,绿色的线为计算出的对称轴,橙色的点为鼠标点击后修正到轴上之后的点。

结果.png

结果2.png

结果3.png