这一讲的主要目的是为了大家在读Python程序的时候对循环对象有一个基本概念。
循环对象的并不是随着Python的诞生就存在的,但它的发展迅速,特别是Python 3x的时代,循环对象正在成为循环的标准形式。
什么是循环对象
循环对象是这样一个对象,它包含有一个next()方法(__next__()方法,在python 3x中), 这个方法的目的是进行到下一个结果,而在结束一系列结果之后,举出StopIteration错误。
当一个循环结构(比如for)调用循环对象时,它就会每次循环的时候调用next()方法,直到StopIteration出现,for循环接收到,就知道循环已经结束,停止调用next()。
假设我们有一个test.txt的文件:
1 2 3 |
1234 abcd efg |
我们运行一下python命令行:
>>>f = open(‘test.txt’)
>>>f.next()
>>>f.next()
…
不断输入f.next(),直到最后出现StopIteration
open()返回的实际上是一个循环对象,包含有next()方法。而该next()方法每次返回的就是新的一行的内容,到达文件结尾时举出StopIteration。这样,我们相当于手工进行了循环。
自动进行的话,就是:
1 2 |
for line in open('test.txt'): print line |
在这里,for结构自动调用next()方法,将该方法的返回值赋予给line。循环知道出现StopIteration的时候结束。
相对于序列,用循环对象的好处在于:不用在循环还没有开始的时候,就生成好要使用的元素。所使用的元素可以在循环过程中逐次生成。这样,节省了空间,提高了效率,编程更灵活。
迭代器
从技术上来说,循环对象和for循环调用之间还有一个中间层,就是要将循环对象转换成迭代器(iterator)。这一转换是通过使用iter()函数实现的。但从逻辑层面上,常常可以忽略这一层,所以循环对象和迭代器常常相互指代对方。
生成器
生成器(generator)的主要目的是构成一个用户自定义的循环对象。
生成器的编写方法和函数定义类似,只是在return的地方改为yield。生成器中可以有多个yield。当生成器遇到一个yield时,会暂停运行生成器,返回yield后面的值。当再次调用生成器的时候,会从刚才暂停的地方继续运行,直到下一个yield。生成器自身又构成一个循环器,每次循环使用一个yield返回的值。
下面是一个生成器:
1 2 3 4 5 6 |
def gen(): a = 100 yield a a = a*8 yield a yield 1000 |
该生成器共有三个yield, 如果用作循环器时,会进行三次循环。
1 2 |
for i in gen(): print i |
再考虑如下一个生成器:
1 2 3 |
def gen(): for i in range(4): yield i |
它又可以写成生成器表达式(Generator Expression):
1 |
G = (x for x in range(4)) |
生成器表达式是生成器的一种简便的编写方式。读者可进一步查阅。
表推导
表推导(list comprehension)是快速生成表的方法。它的语法简单,很有实用价值。
假设我们生成表L:
1 2 3 |
L = [] for x in range(10): L.append(x**2) |
以上产生了表L,但实际上有快捷的写法,也就是表推导的方式:
1 |
L = [x**2 for x in range(10)] |
这与生成器表达式类似,只不过用的是中括号。
(表推导的机制实际上是利用循环对象,有兴趣可以查阅。)
练习 下面的表推导会生成什么?
1 2 3 |
xl = [1,3,5] yl = [9,12,13] L = [ x**2 for (x,y) in zip(xl,yl) if y > 10] |
总结
循环对象
生成器
表推导