在较早的一遍文章中,我曾经提到过我已经写了一个属于自己的排序算法,并且认为需要通过一些代码来重新回顾一下这个排序算法。
对于我所完成的工作,我核实并且保证微处理器的安全。对非常复杂的CPU进行测试的一个方法就是创建该芯片的另一个模型,其可以用来产生在CPU上运行的伪随机指令流。这所谓的ISG(指令流产生器)能够在很短的时间内创建几千(甚至几百万)个这样的测试,通过某种方式,使其可以巧妙地给出一些对将在CPU上执行的指令流的控制或操纵。
现在对这些指令流进行模拟,可以通过每一个测试实例花费的时间获取到CPU的那一部分被使用了(这叫做被覆盖)的信息,并且ISG所产生的的过个测试可能会覆盖CPU的同一个区域。为了增加CPU的整体覆盖范围,我们启动一个被称作复原的行为——所有的测试都运行,并且它们的覆盖范围和花费的时间将被存储起来。在这次复原的最后,您可能会有几千个测试实例只覆盖了CPU的某一部分。
如果你拿着这个复原测试的记过,并且对其进行排序,你会发现这个测试结果的一个子集会给出它们覆盖了CPU的所有部分。通常,上千的伪随机测试可能会被排序,进而产生一个只有几百个测试的子列表,它们在运行时将会给出同样的覆盖范围。接下来我们经常会做的是,查看CPU的哪个部分没有被覆盖,然后通过ISG或其它方法在产生更多的测试,来试图填补这一空白。再然后会运行一次新的复原,并且循环得再一次进行排序来充分使用该CPU,以达到某个覆盖范围目标。
对测试进行排名是复原流程的一个重要部分,当其进行地很好时你可能就会忘记它。不幸的是,有时,当我想要对其它数据进行排名时,CAD工具厂商所提供的常用排名算法并不适合。因此,能够扩展到处理成百上千个测试和覆盖点才是一个排名算法的本质。
输入
通常情况下,我不得不从其他CAD程序产生的文本或HTML文件来解析我的输入 – 这是个是单调乏味的工作,我会跳过这个乏味的工作,而通过以Python字典的形式提供理想的输入。 (有时用于解析输入文件的代码可以跟排名算法一样大或着更大)。
让我们假设每个ISG测试都有一个名称,在确定的“时间”内运行,当模拟显示’覆盖’设计中的
一组编号的特性时。解析之后,所收集的输入数据由程序中的结果字典来表示。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 |
results = { # 'TEST': ( TIME, set([COVERED_POINT ...])), 'test_00': ( 2.08, set([2, 3, 5, 11, 12, 16, 19, 23, 25, 26, 29, 36, 38, 40])), 'test_01': ( 58.04, set([0, 10, 13, 15, 17, 19, 20, 22, 27, 30, 31, 33, 34])), 'test_02': ( 34.82, set([3, 4, 6, 12, 15, 21, 23, 25, 26, 33, 34, 40])), 'test_03': ( 32.74, set([4, 5, 10, 16, 21, 22, 26, 39])), 'test_04': (100.00, set([0, 1, 4, 6, 7, 8, 9, 11, 12, 18, 26, 27, 31, 36])), 'test_05': ( 4.46, set([1, 2, 6, 11, 14, 16, 17, 21, 22, 23, 30, 31])), 'test_06': ( 69.57, set([10, 11, 15, 17, 19, 22, 26, 27, 30, 32, 38])), 'test_07': ( 85.71, set([0, 2, 4, 5, 9, 10, 14, 17, 24, 34, 36, 39])), 'test_08': ( 5.73, set([0, 3, 8, 9, 13, 19, 23, 25, 28, 36, 38])), 'test_09': ( 15.55, set([7, 15, 17, 25, 26, 30, 31, 33, 36, 38, 39])), 'test_10': ( 12.05, set([0, 4, 13, 14, 15, 24, 31, 35, 39])), 'test_11': ( 52.23, set([0, 3, 6, 10, 11, 13, 23, 34, 40])), 'test_12': ( 26.79, set([0, 1, 4, 5, 7, 8, 10, 12, 13, 31, 32, 40])), 'test_13': ( 16.07, set([2, 6, 9, 11, 13, 15, 17, 18, 34])), 'test_14': ( 40.62, set([1, 2, 8, 15, 16, 19, 22, 26, 29, 31, 33, 34, 38])), } |
贪婪排名算法的核心是对当前选择测试的子集进行排序:
- 至少用一个测试集覆盖尽可能大的范围。
- 经过第一个步骤,逐步减少测试集,同时覆盖尽可能大的范围。
- 给选择的测试做出一个排序,这样小数据集的测试也可以选择使用
- 完成上述排序后,接下来就可以优化算法的执行时间了
- 当然,他需要能在很大的测试集下工作。
贪婪排名算法的工作原理就是先选择当前测试集的某一项的最优解,然后寻找下一项的最优解,依次进行…
如果有两个以上的算法得出相同的执行结果,那么将以执行”时间“来比较两种算法优劣。