map
1 |
map(funcname, list) |
python的map 函数使得函数能直接以list的每个元素作为参数传递到funcname中, 并返回响应的新的list
如下:
1 2 3 |
def sq(x): return x*x #求x的平方 map(sq, [1,3, 5,7,9]) #[1, 9, 25, 49, 81] |
在需要对list中的每个元素做转换的时候, 会很方便
比如,把list中的每个int 转换成str
1 |
map(str, [23,43,4545,324]) #['23', '43', '4545', '324'] |
当然, 第二个参数是list
, 也可以是tuple
或者是set
类list结构的, dict 是不行的,不过返回的结果都是list
1 2 |
map(sq, (1,3, 5,7,9)) # tuple [1, 9, 25, 49, 81] map(sq, set([1,3, 5,3,7,9])) # set [1, 9, 81, 25, 49] |
这里顺便说一下, dict的结构是用{}
表示的,如
1 |
{"name": "Yi_Zhi_Yu", "age":25} |
是直观的key-value形式, 那么如果{}
中的是一个类list的结构呢, 如:
1 |
{"Yi_Zhi_Yu", 25} |
其实, 这就是set的最终返回形式, 等价于:
1 |
set(["Yi_Zhi_Yu", 25])# 你会看到最终的输出形式是{25, 'Yi_Zhi_Yu'} |
那么, 自然{}
有重复值得时候也会去重
1 |
{1,3, 5, 3, 7, 9} #{1, 3, 5, 7, 9} |
reduce
1 |
reduce(funcname, list) |
与map相比 , reduce类似于一个聚合类的应用方法, 把list中的参数, 依次传递给funcname, 每次funcname的参数都是上个funcname 执行结果和下一个list中的元素, 所以, funcname 的 参数必须是两个. 从执行过程看, 有点像递归
例如: 求range(1, 101)
(不包括101)的和,
1 2 3 |
def c_sum(x, y): return x + y; reduce(c_sum, range(1,101)) #5050 |
filter
1 |
filter(funcname, list) |
执行过程依次将list中的元素传递到funcname函数中, 根据funcname返回的True或False 保留或丢弃元素
例: 返回某个list
中的所有int
数据
1 2 3 4 5 6 7 |
def is_int(x): if isinstance(x, (int)): return True else: return False filter(is_int, ["Yi",2, "3", 4]) #[2, 4] |
sorted
1 |
sorted( list, [comp_func]) |
排序方法, 第二个是可选参数, 根据可选参数返回的值, 对结果进行排序, comp_func
接受两个参数(x, y), 最终返回的结果应该是-1.0,1
, 如果返回的是-1
, 表示x ,
0
表示x=y
, 1
表示x>y
, 所以, 实际的排序可以自定义
默认是正序排序:
1 |
sorted([3,4, 12, 5, 9, 1]) #[1, 3, 4, 5, 9, 12] |
如果是需要倒序排列, 自定义方法:
1 2 3 4 5 6 7 8 |
def m_order(x, y): if(x > y): return -1 elif(x == y): return 0 else: return 1 sorted([3,4, 12, 5, 9, 1], m_order) #[12, 9, 5, 4, 3, 1] |
PS: 以上为学习笔记, 如有错误, 还望指正
参考:廖雪峰Python教程