一、概述
CPU从三十多年前的8086,到十年前的奔腾,再到当下的多核i7。一开始,以单核cpu的主频为目标,架构的改良和集成电路工艺的进步使得cpu的性能高速上升,单核cpu的主频从老爷车的MHz阶段一度接近4GHz高地。然而,也因为工艺和功耗等的限制,单核cpu遇到了人生的天花板,急需转换思维,以满足无止境的性能需求。多核cpu在此登上历史舞台。给你的老爷车多加两个引擎,让你有法拉利的感觉。现时代,连手机都到处叫嚣自己有4核8核处理器的时代,PC就更不用说了。
扯远了,anyway,对于俺们程序员来说,如何利用如此强大的引擎完成我们的任务才是我们要考虑的。随着大规模数据处理、大规模问题和复杂系统求解需求的增加,以前的单核编程已经有心无力了。如果程序一跑就得几个小时,甚至一天,想想都无法原谅自己。那如何让自己更快的过度到高大上的多核并行编程中去呢?哈哈,广大人民的力量!
目前工作中我所接触到的并行处理框架主要有MPI、OpenMP和MapReduce(Hadoop)三个(CUDA属于GPU并行编程,这里不提及)。MPI和Hadoop都可以在集群中运行,而OpenMP因为共享存储结构的关系,不能在集群上运行,只能单机。另外,MPI可以让数据保留在内存中,可以为节点间的通信和数据交互保存上下文,所以能执行迭代算法,而Hadoop却不具有这个特性。因此,需要迭代的机器学习算法大多使用MPI来实现。当然了,部分机器学习算法也是可以通过设计使用Hadoop来完成的。(浅见,如果错误,希望各位不吝指出,谢谢)。
本文主要介绍Python环境下MPI编程的实践基础。
二、MPI与mpi4py
MPI是Message Passing Interface的简称,也就是消息传递。消息传递指的是并行执行的各个进程具有自己独立的堆栈和代码段,作为互不相关的多个程序独立执行,进程之间的信息交互完全通过显示地调用通信函数来完成。
Mpi4py是构建在mpi之上的python库,使得python的数据结构可以在进程(或者多个cpu)之间进行传递。
2.1、MPI的工作方式
很简单,就是你启动了一组MPI进程,每个进程都是执行同样的代码!然后每个进程都有一个ID,也就是rank来标记我是谁。什么意思呢?假设一个CPU是你请的一个工人,共有10个工人。你有100块砖头要搬,然后很公平,让每个工人搬10块。这时候,你把任务写到一个任务卡里面,让10个工人都执行这个任务卡中的任务,也就是搬砖!这个任务卡中的“搬砖”就是你写的代码。然后10个CPU执行同一段代码。需要注意的是,代码里面的所有变量都是每个进程独有的,虽然名字相同。
例如,一个脚本test.py,里面包含以下代码:
1 2 3 |
from mpi4py import MPI print("hello world'') print("my rank is: %d" %MPI.rank) |
然后我们在命令行通过以下方式运行:
#mpirun –np 5 python test.py
-np5 指定启动5个mpi进程来执行后面的程序。相当于对脚本拷贝了5份,每个进程运行一份,互不干扰。在运行的时候代码里面唯一的不同,就是各自的rank也就是ID不一样。所以这个代码就会打印5个hello world和5个不同的rank值,从0到4.
2.2、点对点通信
点对点通信(Point-to-PointCommunication)的能力是信息传递系统最基本的要求。意思就是让两个进程直接可以传输数据,也就是一个发送数据,另一个接收数据。接口就两个,send和recv,来个例子:
1 2 3 4 5 6 7 8 9 10 11 12 |
import mpi4py.MPI as MPI comm = MPI.COMM_WORLD comm_rank = comm.Get_rank() comm_size = comm.Get_size() # point to point communication data_send = [comm_rank]*5 comm.send(data_send,dest=(comm_rank+1)%comm_size) data_recv =comm.recv(source=(comm_rank-1)%comm_size) print("my rank is %d, and Ireceived:" % comm_rank) print data_recv |
启动5个进程运行以上代码,结果如下:
1 2 3 4 5 6 7 8 9 10 |
my rank is 0, and I received: [4, 4, 4, 4, 4] my rank is 1, and I received: [0, 0, 0, 0, 0] my rank is 2, and I received: [1, 1, 1, 1, 1] my rank is 3, and I received: [2, 2, 2, 2, 2] my rank is 4, and I received: [3, 3, 3, 3, 3] |
可以看到,每个进程都创建了一个数组,然后把它传递给下一个进程,最后的那个进程传递给第一个进程。comm_size就是mpi的进程个数,也就是-np指定的那个数。MPI.COMM_WORLD 表示进程所在的通信组。
但这里面有个需要注意的问题,如果我们要发送的数据比较小的话,mpi会缓存我们的数据,也就是说执行到send这个代码的时候,会缓存被send的数据,然后继续执行后面的指令,而不会等待对方进程执行recv指令接收完这个数据。但是,如果要发送的数据很大,那么进程就是挂起等待,直到接收进程执行了recv指令接收了这个数据,进程才继续往下执行。所以上述的代码发送[rank]*5没啥问题,如果发送[rank]*500程序就会半死不活的样子了。因为所有的进程都会卡在发送这条指令,等待下一个进程发起接收的这个指令,但是进程是执行完发送的指令才能执行接收的指令,这就和死锁差不多了。所以一般,我们将其修改成以下的方式:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 |
import mpi4py.MPI as MPI comm = MPI.COMM_WORLD comm_rank = comm.Get_rank() comm_size = comm.Get_size() data_send = [comm_rank]*5 if comm_rank == 0: comm.send(data_send, dest=(comm_rank+1)%comm_size) if comm_rank > 0: data_recv = comm.recv(source=(comm_rank-1)%comm_size) comm.send(data_send, dest=(comm_rank+1)%comm_size) if comm_rank == 0: data_recv = comm.recv(source=(comm_rank-1)%comm_size) print("my rank is %d, and Ireceived:" % comm_rank) print data_recv |
第一个进程一开始就发送数据,其他进程一开始都是在等待接收数据,这时候进程1接收了进程0的数据,然后发送进程1的数据,进程2接收了,再发送进程2的数据……知道最后进程0接收最后一个进程的数据,从而避免了上述问题。
一个比较常用的方法是封一个组长,也就是一个主进程,一般是进程0作为主进程leader。主进程将数据发送给其他的进程,其他的进程处理数据,然后返回结果给进程0。换句话说,就是进程0来控制整个数据处理流程。
2.3、群体通信
点对点通信是A发送给B,一个人将自己的秘密告诉另一个人,群体通信(Collective Communications)像是拿个大喇叭,一次性告诉所有的人。前者是一对一,后者是一对多。但是,群体通信是以更有效的方式工作的。它的原则就一个:尽量把所有的进程在所有的时刻都使用上!我们在下面的bcast小节讲述。
群体通信还是发送和接收两类,一个是一次性把数据发给所有人,另一个是一次性从所有人那里回收结果。
1)广播bcast
将一份数据发送给所有的进程。例如我有200份数据,有10个进程,那么每个进程都会得到这200份数据。