虽然并非你编写的每个 Python 程序都要求一个严格的性能分析,但是让人放心的是,当问题发生的时候,Python 生态圈有各种各样的工具可以处理这类问题。
分析程序的性能可以归结为回答四个基本问题:
- 正运行的多快
- 速度瓶颈在哪里
- 内存使用率是多少
- 内存泄露在哪里
下面,我们将用一些神奇的工具深入到这些问题的答案中去。
用 time
粗粒度的计算时间
让我们开始通过使用一个快速和粗暴的方法计算我们的代码:传统的 unix time
工具。
1 2 3 4 |
$ time python yourprogram.py real 0m1.028s user 0m0.001s sys 0m0.003s |
三个输出测量值之间的详细意义在这里 stackoverflow article,但简介在这:
- real — 指的是实际耗时
- user — 指的是内核之外的 CPU 耗时
- sys — 指的是花费在内核特定函数的 CPU 耗时
你会有你的应用程序用完了多少 CPU 周期的即视感,不管系统上其他运行的程序添加的系统和用户时间。
如果 sys 和 user 时间之和小于 real 时间,然后你可以猜测到大多数程序的性能问题最有可能与 IO wait
相关。
用 timing context
管理器细粒度的计算时间
我们下一步的技术包括直接嵌入代码来获取细粒度的计时信息。下面是我进行时间测量的代码的一个小片段
timer.py
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 |
import time class Timer(object): def __init__(self, verbose=False): self.verbose = verbose def __enter__(self): self.start = time.time() return self def __exit__(self, *args): self.end = time.time() self.secs = self.end - self.start self.msecs = self.secs * 1000 # millisecs if self.verbose: print 'elapsed time: %f ms' % self.msecs |
为了使用它,使用 Python 的 with
关键字和 Timer
上下文管理器来包装你想计算的代码。当您的代码块开始执行,它将照顾启动计时器,当你的代码块结束的时候,它将停止计时器。
这个代码片段示例:
1 2 3 4 5 6 7 8 9 10 11 |
from timer import Timer from redis import Redis rdb = Redis() with Timer() as t: rdb.lpush("foo", "bar") print "=> elasped lpush: %s s" % t.secs with Timer() as t: rdb.lpop("foo") print "=> elasped lpop: %s s" % t.secs |
为了看看我的程序的性能随着时间的演化的趋势,我常常记录这些定时器的输出到一个文件中。
使用 profiler
逐行计时和分析执行的频率
罗伯特·克恩有一个不错的项目称为 line_profiler , 我经常使用它来分析我的脚本有多快,以及每行代码执行的频率:
为了使用它,你可以通过使用 pip
来安装它:
1 |
pip install line_profiler |
安装完成后,你将获得一个新模块称为 line_profiler
和 kernprof.py
可执行脚本。
为了使用这个工具,首先在你想测量的函数上设置 @profile
修饰符。不用担心,为了这个修饰符,你不需要引入任何东西。kernprof.py
脚本会在运行时自动注入你的脚本。
primes.py
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 |
@profile def primes(n): if n==2: return [2] elif n<2: return [] s=range(3,n+1,2) mroot = n ** 0.5 half=(n+1)/2-1 i=0 m=3 while m <= mroot: ý可以归结为回答四个基本问题:
下面,我们将用一些神奇的工具深入到这些问题的答案中去。 用
|
1 2 3 4 |
$ time python yourprogram.py real 0m1.028s user 0m0.001s sys 0m0.003s |
三个输出测量值之间的详细意义在这里 stackoverflow article,但简介在这:
- real — 指的是实际耗时
- user — 指的是内核之外的 CPU 耗时
- sys — 指的是花费在内核特定函数的 CPU 耗时
你会有你的应用程序用完了多少 CPU 周期的即视感,不管系统上其他运行的程序添加的系统和用户时间。
如果 sys 和 user 时间之和小于 real 时间,然后你可以猜测到大多数程序的性能问题最有可能与 IO wait
相关。
用 timing context
管理器细粒度的计算时间
我们下一步的技术包括直接嵌入代码来获取细粒度的计时信息。下面是我进行时间测量的代码的一个小片段
timer.py
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 |
import time class Timer(object): def __init__(self, verbose=False): self.verbose = verbose def __enter__(self): self.start = time.time() return self def __exit__(self, *args): self.end = time.time() self.secs = self.end - self.start self.msecs = self.secs * 1000 # millisecs if self.verbose: print 'elapsed time: %f ms' % self.msecs |
为了使用它,使用 Python 的 with
关键字和 Timer
上下文管理器来包装你想计算的代码。当您的代码块开始执行,它将照顾启动计时器,当你的代码块结束的时候,它将停止计时器。
这个代码片段示例:
1 2 3 4 5 6 7 8 9 10 11 |
from timer import Timer from redis import Redis rdb = Redis() with Timer() as t: rdb.lpush("foo", "bar") print "=> elasped lpush: %s s" % t.secs with Timer() as t: rdb.lpop("foo") print "=> elasped lpop: %s s" % t.secs |
为了看看我的程序的性能随着时间的演化的趋势,我常常记录这些定时器的输出到一个文件中。
使用 profiler
逐行计时和分析执行的频率
罗伯特·克恩有一个不错的项目称为 line_profiler , 我经常使用它来分析我的脚本有多快,以及每行代码执行的频率:
为了使用它,你可以通过使用 pip
来安装它:
1 |
pip install line_profiler |
安装完成后,你将获得一个新模块称为 line_profiler
和 kernprof.py
可执行脚本。
为了使用这个工具,首先在你想测量的函数上设置 @profile
修饰符。不用担心,为了这个修饰符,你不需要引入任何东西。kernprof.py
脚本会在运行时自动注入你的脚本。
primes.py
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 |
@profile def primes(n): if n==2: return [2] elif n<2: return [] s=range(3,n+1,2) mroot = n ** 0.5 half=(n+1)/2-1 i=0 m=3 while m <= mroot: -h"> self.start = time. |