用Python在地图上模拟疫情扩散

754 查看

瘟疫蔓延,连芬兰都难以幸免

受杰森的《Almost Looks Like Work》启发,我来展示一些病毒传播模型。需要注意的是这个模型并不反映现实情况,因此不要误以为是西非可怕的传染病。相反,它更应该被看做是某种虚构的僵尸爆发现象。那么,让我们进入主题。

这就是SIR模型,其中字母S、I和R反映的是在僵尸疫情中,个体可能处于的不同状态。

  • S 代表易感群体,即健康个体中潜在的可能转变的数量。
  • I 代表染病群体,即僵尸数量。
  • R 代表移除量,即因死亡而退出游戏的僵尸数量,或者感染后又转回人类的数量。但对与僵尸不存在治愈者,所以我们就不要自我愚弄了(如果要把SIR模型应用到流感传染中,还是有治愈者的)。

至于β(beta)和γ(gamma):

  • β(beta)表示疾病的传染性程度,只要被咬就会感染。
  • γ(gamma)表示从僵尸走向死亡的速率,取决于僵尸猎人的平均工作速率,当然,这不是一个完美的模型,请对我保持耐心。

S′=−βIS告诉我们健康者变成僵尸的速率,S′是对时间的导数。

I′=βIS−γI告诉我们感染者是如何增加的,以及行尸进入移除态速率(双关语)。

R′=γI只是加上(gamma I),这一项在前面的等式中是负的。

上面的模型没有考虑S/I/R的空间分布,下面来修正一下!

一种方法是把瑞典和北欧国家分割成网格,每个单元可以感染邻近单元,描述如下:

其中对于单元是它周围的四个单元。(不要因为对角单元而脑疲劳,我们需要我们的大脑不被吃掉)。

初始化一些东东。

适当的beta和gamma值就能够摧毁大半江山

还记得导数的定义么?当导数已知,假设Δt很小的情况下,经过重新整理,它可以用来近似预测函数的下一个取值,我们已经声明过u′(t)。

回想前面:

我们把函数(u(t +△t))在下一个时间步记为表示当前时间步。

这种方法叫做欧拉法,代码如下:

我们需要函数f(u)。友好的numpy提供了简洁的数组操作。我可能会在另一篇文章中回顾它,因为它们太强大了,需要更多的解释,但现在这样就能达到效果: