许多函数式文章讲述的是组合,流水线和高阶函数这样的抽象函数式技术。本文不同,它展示了人们每天编写的命令式,非函数式代码示例,以及将这些示例转换为函数式风格。
文章的第一部分将一些短小的数据转换循环重写成函数式的maps和reduces。第二部分选取长一点的循环,把他们分解成单元,然后把每个单元改成函数式的。第三部分选取一个很长的连续数据转换循环,然后把它分解成函数式流水线。
示例都是用Python写的,因为很多人觉得Python易读。为了证明函数式技术对许多语言来说都相同,许多示例避免使用Python特有的语法:map,reduce,pipeline。
导引
当人们谈论函数式编程,他们会提到非常多的“函数式”特性。提到不可变数据¹,第一类对象²以及尾调用优化³。这些是帮助函数式编程的语言特征。提到mapping(映射),reducing(归纳),piplining(管道),recursing(递归),currying4(科里化);以及高阶函数的使用。这些是用来写函数式代码的编程技术。提到并行5,惰性计算6以及确定性。这些是有利于函数式编程的属性。
忽略全部这些。可以用一句话来描述函数式代码的特征:避免副作用。它不会依赖也不会改变当前函数以外的数据。所有其他的“函数式”的东西都源于此。当你学习时把它当做指引。
这是一个非函数式方法:
1 2 3 4 |
a = 0 def increment1(): global a a += 1 |
这是一个函数式的方法:
1 2 |
def increment2(a): return a + 1 |
不要在lists上迭代。使用map和reduce。
Map(映射)
Map接受一个方法和一个集合作为参数。它创建一个新的空集合,以每一个集合中的元素作为参数调用这个传入的方法,然后把返回值插入到新创建的集合中。最后返回那个新集合。
这是一个简单的map,接受一个存放名字的list,并且返回一个存放名字长度的list:
1 2 3 4 |
name_lengths = map(len, ["Mary", "Isla", "Sam"]) print name_lengths # => [4, 4, 3] |
接下来这个map将传入的collection中每个元素都做平方操作:
1 2 3 4 |
squares = map(lambda x: x * x, [0, 1, 2, 3, 4]) print squares # => [0, 1, 4, 9, 16] |
这个map并没有使用一个命名的方法。它是使用了一个匿名并且内联的用lambda定义的方法。lambda的参数定义在冒号左边。方法主体定义在冒号右边。返回值是方法体运行的结果。
下面的非函数式代码接受一个真名列表,然后用随机指定的代号来替换真名。
1 2 3 4 5 6 7 8 9 10 |
import random names = ['Mary', 'Isla', 'Sam'] code_names = ['Mr. Pink', 'Mr. Orange', 'Mr. Blonde'] for i in range(len(names)): names[i] = random.choice(code_names) print names # => ['Mr. Blonde', 'Mr. Blonde', 'Mr. Blonde'] |
(正如你所见的,这个算法可能会给多个密探同一个秘密代号。希望不会在任务中混淆。)
这个可以用map重写:
1 2 3 4 5 6 7 8 |
import random names = ['Mary', 'Isla', 'Sam'] secret_names = map(lambda x: random.choice(['Mr. Pink', 'Mr. Orange', 'Mr. Blonde']), names) |
练习1.尝试用map重写下面的代码。它接受由真名组成的list作为参数,然后用一个更加稳定的策略产生一个代号来替换这些名字。
1 2 3 4 5 6 7 |
names = ['Mary', 'Isla', 'Sam'] for i in range(len(names)): names[i] = hash(names[i]n-v">names[i] = hash(names[i]m/">翻译组。 许多函数式文章讲述的是组合,流水线和高阶函数这样的抽象函数式技术。本文不同,它展示了人们每天编写的命令式,非函数式代码示例,以及将这些示例转换为函数式风格。 文章的第一部分将一些短小的数据转换循环重写成函数式的maps和reduces。第二部分选取长一点的循环,把他们分解成单元,然后把每个单元改成函数式的。第三部分选取一个很长的连续数据转换循环,然后把它分解成函数式流水线。 示例都是用Python写的,因为很多人觉得Python易读。为了证明函数式技术对许多语言来说都相同,许多示例避免使用Python特有的语法:map,reduce,pipeline。 导引当人们谈论函数式编程,他们会提到非常多的“函数式”特性。提到不可变数据¹,第一类对象²以及尾调用优化³。这些是帮助函数式编程的语言特征。提到mapping(映射),reducing(归纳),piplining(管道),recursing(递归),currying4(科里化);以及高阶函数的使用。这些是用来写函数式代码的编程技术。提到并行5,惰性计算6以及确定性。这些是有利于函数式编程的属性。 忽略全部这些。可以用一句话来描述函数式代码的特征:避免副作用。它不会依赖也不会改变当前函数以外的数据。所有其他的“函数式”的东西都源于此。当你学习时把它当做指引。 这是一个非函数式方法:
这是一个函数式的方法:
不要在lists上迭代。使用map和reduce。Map(映射)Map接受一个方法和一个集合作为参数。它创建一个新的空集合,以每一个集合中的元素作为参数调用这个传入的方法,然后把返回值插入到新创建的集合中。最后返回那个新集合。 这是一个简单的map,接受一个存放名字的list,并且返回一个存放名字长度的list:
接下来这个map将传入的collection中每个元素都做平方操作:
这个map并没有使用一个命名的方法。它是使用了一个匿名并且内联的用lambda定义的方法。lambda的参数定义在冒号左边。方法主体定义在冒号右边。返回值是方法体运行的结果。 下面的非函数式代码接受一个真名列表,然后用随机指定的代号来替换真名。
(正如你所见的,这个算法可能会给多个密探同一个秘密代号。希望不会在任务中混淆。) 这个可以用map重写:
练习1.尝试用map重写下面的代码。它接受由真名组成的list作为参数,然后用一个更加稳定的策略产生一个代号来替换这些名字。
|