Flume作为Hadoop生态系统中的一员,可以说是功能最大的数据收集系统,Flume的模型也比较简单,通过agent不断级连,来打通数据源与最终目的地(一般为HDFS)。下图结构说明了Flume中的数据流。
我今天要说的是Channel部分,具体来说是MemoryChannel的分析,其他概念像source、sink大家可以去官方文档查看。
注意:
本文章中的Flume源码为1.6.0版本。
Event
Event是Flume中对数据的抽象,分为两部分:header与body,和http中的header与body很类似。
Flume中按Event为单位操作数据,不同的source、sink在必要时会自动在原始数据与Event之间做转化。
Channel
Channel充当了Source与Sink之间的缓冲区。Channel的引入,使得source与sink之间的藕合度降低,source只管像Channel发数据,sink只需从Channel取数据。
此外,有了Channel,不难得出下面结论:
source与sink可以为N对N的关系
source发数据的速度可以大于sink取数据的速度(在Channel不满的情况下)
Transaction
Channel采用了Transaction
(事务)机制来保证数据的完整性,这里的事务和数据库中的事务概念类似,但并不是完全一致,其语义可以参考下面这个图:
source端通过commit操作像Channel放置数据,sink端通过commit操作从Channel取数据。
那么事务是如何保证数据的完整性的呢?看下面有两个agent的情况:
数据流程:
source 1
产生Event,通过“put”、“commit”操作将Event放到Channel 1
中sink 1
通过“take”操作从Channel 1
中取出Event,并把它发送到Source 2
中source 2
通过“put”、“commit”操作将Event放到Channel 2
中source 2
向sink 1
发送成功信号,sink 1
“commit”步骤2中的“take”操作(其实就是删除Channel 1
中的Event)
说明:
在任何时刻,Event至少在一个Channel中是完整有效的
Memory Channe
Flume中提供的Channel实现主要有三个:
Memory Channel,event保存在Java Heap中。如果允许数据小量丢失,推荐使用
File Channel,event保存在本地文件中,可靠性高,但吞吐量低于Memory Channel
JDBC Channel,event保存在关系数据中,一般不推荐使用
不同的Channel主要在于Event存放的位置不同,今天我着重讲一下比较简单的Memory Channel的源码。
首先看一下MemoryChannel中比较重要的成员变量:
// lock to guard queue, mainly needed to keep it locked down during resizes
// it should never be held through a blocking operation
private Object queueLock = new Object();
//queue为Memory Channel中存放Event的地方,这里用了LinkedBlockingDeque来实现
@GuardedBy(value = "queueLock")
private LinkedBlockingDeque<Event> queue;
//下面的两个信号量用来做同步操作,queueRemaining表示queue中的剩余空间,queueStored表示queue中的使用空间
// invariant that tracks the amount of space remaining in the queue(with all uncommitted takeLists deducted)
// we maintain the remaining permits = queue.remaining - takeList.size()
// this allows local threads waiting for space in the queue to commit without denying access to the
// shared lock to threads that would make more space on the queue
private Semaphore queueRemaining;
// used to make "reservations" to grab data from the queue.
// by using this we can block for a while to get data without locking all other threads out
// like we would if we tried to use a blocking call on queue
private Semaphore queueStored;
//下面几个变量为配置文件中Memory Channel的配置项
// 一个事务中Event的最大数目
private volatile Integer transCapacity;
// 向queue中添加、移除Event的等待时间
private volatile int keepAlive;
// queue中,所有Event所能占用的最大空间
private volatile int byteCapacity;
private volatile int lastByteCapacity;
// queue中,所有Event的header所能占用的最大空间占byteCapacity的比例
private volatile int byteCapacityBufferPercentage;
// 用于标示byteCapacity中剩余空间的信号量
private Semaphore bytesRemaining;
// 用于记录Memory Channel的一些指标,后面可以通过配置监控来观察Flume的运行情况
private ChannelCounter channelCounter;
然后重点说下MemoryChannel里面的MemoryTransaction,它是Transaction类的子类,从其文档来看,一个Transaction的使用模式都是类似的:
Channel ch = ...
Transaction tx = ch.getTransaction();
try {
tx.begin();
...
// ch.put(event) or ch.take()
...
tx.commit();
} catch (ChannelException ex) {
tx.rollback();
...
} finally {
tx.close();
}
可以看到一个Transaction主要有、put
、take
、commit
、rollback
这四个方法,我们在实现其子类时,主要也是实现着四个方法。
Flume官方为了方便开发者实现自己的Transaction,定义了BasicTransactionSemantics,这时开发者只需要继承这个辅助类,并且实现其相应的、doPut
、doTake
、doCommit
、doRollback
方法即可,MemoryChannel
就是继承了这个辅助类。
private class MemoryTransaction extends BasicTransactionSemantics {
//和MemoryChannel一样,内部使用LinkedBlockingDeque来保存没有commit的Event
private LinkedBlockingDeque<Event> takeList;
private LinkedBlockingDeque<Event> putList;
private final ChannelCounter channelCounter;
//下面两个变量用来表示put的Event的大小、take的Event的大小
private int putByteCounter = 0;
private int takeByteCounter = 0;
public MemoryTransaction(int transCapacity, ChannelCounter counter) {
//用transCapacity来初始化put、take的队列
putList = new LinkedBlockingDeque<Event>(transCapacity);
takeList = new LinkedBlockingDeque<Event>(transCapacity);
channelCounter = counter;
}
@Override
protected void doPut(Event event) throws InterruptedException {
//doPut操作,先判断putList中是否还有剩余空间,有则把Event插入到该队列中,同时更新putByteCounter
//没有剩余空间的话,直接报ChannelException
channelCounter.incrementEventPutAttemptCount();
int eventByteSize = (int)Math.ceil(estimateEventSize(event)/byteCapacitySlotSize);
if (!putList.offer(event)) {
throw new ChannelException(
"Put queue for MemoryTransaction of capacity " +
putList.size() + " full, consider committing more frequently, " +
"increasing capacity or increasing thread count");
}
putByteCounter += eventByteSize;
}
@Override
protected Event doTake() throws InterruptedException {
//doTake操作,首先判断takeList中是否还有剩余空间
channelCounter.incrementEventTakeAttemptCount();
if(takeList.remainingCapacity() == 0) {
throw new ChannelException("Take list for MemoryTransaction, capacity " +
takeList.size() + " full, consider committing more frequently, " +
"increasing capacity, or increasing thread count");
}
//然后判断,该MemoryChannel中的queue中是否还有空间,这里通过信号量来判断
if(!queueStored.tryAcquire(keepAlive, TimeUnit.SECONDS)) {
return null;
}
Event event;
//从MemoryChannel中的queue中取出一个event
synchronized(queueLock) {
event = queue.poll();
}
Preconditions.checkNotNull(event, "Queue.poll returned NULL despite semaphore " +
"signalling existence of entry");
//放到takeList中,然后更新takeByteCounter变量
takeList.put(event);
int eventByteSize = (int)Math.ceil(estimateEventSize(event)/byteCapacitySlotSize);
takeByteCounter += eventByteSize;
return event;
}
@Override
protected void doCommit() throws InterruptedException {
//该对应一个事务的提交
//首先判断putList与takeList的相对大小
int remainingChange = takeList.size() - putList.size();
//如果takeList小,说明向该MemoryChannel放的数据比取的数据要多,所以需要判断该MemoryChannel是否有空间来放
if(remainingChange < 0) {
// 1. 首先通过信号量来判断是否还有剩余空间
if(!bytesRemaining.tryAcquire(putByteCounter, keepAlive,
TimeUnit.SECONDS)) {
throw new ChannelException("Cannot commit transaction. Byte capacity " +
"allocated to store event body " + byteCapacity * byteCapacitySlotSize +
"reached. Please increase heap space/byte capacity allocated to " +
"the channel as the sinks may not be keeping up with the sources");
}
// 2. 然后判断,在给定的keepAlive时间内,能否获取到充足的queue空间
if(!queueRemaining.tryAcquire(-remainingChange, keepAlive, TimeUnit.SECONDS)) {
bytesRemaining.release(putByteCounter);
throw new ChannelFullException("Space for commit to queue couldn't be acquired." +
" Sinks are likely not keeping up with sources, or the buffer size is too tight");
}
}
int puts = putList.size();
int takes = takeList.size();
//如果上面的两个判断都过了,那么把putList中的Event放到该MemoryChannel中的queue中。
synchronized(queueLock) {
if(puts > 0 ) {
while(!putList.isEmpty()) {
if(!queue.offer(putList.removeFirst())) {
throw new RuntimeException("Queue add failed, this shouldn't be able to happen");
}
}
}
//清空本次事务中用到的putList与takeList,释放资源
putList.clear();
takeList.clear();
}
//更新控制queue大小的信号量bytesRemaining,因为把takeList清空了,所以直接把takeByteCounter加到bytesRemaining中。
bytesRemaining.release(takeByteCounter);
takeByteCounter = 0;
putByteCounter = 0;
//因为把putList中的Event放到了MemoryChannel中的queue,所以把puts加到queueStored中去。
queueStored.release(puts);
//如果takeList比putList大,说明该MemoryChannel中queue的数量应该是减少了,所以把(takeList-putList)的差值加到信号量queueRemaining
if(remainingChange > 0) {
queueRemaining.release(remainingChange);
}
if (puts > 0) {
channelCounter.addToEventPutSuccessCount(puts);
}
if (takes > 0) {
channelCounter.addToEventTakeSuccessCount(takes);
}
channelCounter.setChannelSize(queue.size());
}
@Override
protected void doRollback() {
//当一个事务失败时,会进行回滚,即调用本方法
//首先把takeList中的Event放回到MemoryChannel中的queue中。
int takes = takeList.size();
synchronized(queueLock) {
Preconditions.checkState(queue.remainingCapacity() >= takeList.size(), "Not enough space in memory channel " +
"queue to rollback takes. This should never happen, please report");
while(!takeList.isEmpty()) {
queue.addFirst(takeList.removeLast());
}
//然后清空putList
putList.clear();
}
//因为清空了putList,所以需要把putList所占用的空间大小添加到bytesRemaining中
bytesRemaining.release(putByteCounter);
putByteCounter = 0;
takeByteCounter = 0;
//因为把takeList中的Event回退到queue中去了,所以需要把takeList的大小添加到queueStored中
queueStored.release(takes);
channelCounter.setChannelSize(queue.size());
}
}
MemoryChannel
的逻辑相对简单,主要是通过MemoryTransaction
中的putList
、takeList
与MemoryChannel中的queue
打交道,这里的queue
相当于持久化层,只不过放到了内存中,如果是FileChannel
的话,会把这个queue
放到本地文件中。下面表示了Event在一个使用了MemoryChannel的agent中数据流向:
source ---> putList ---> queue ---> takeList ---> sink
还需要注意的一点是,这里的事务可以嵌套使用,如下图:
当有两个agent级连时,sink的事务中包含了一个source的事务,这也应证了前面所说的:
在任何时刻,Event至少在一个Channel中是完整有效的