简介
Volley 是非常火的一个网络请求框架,一方面它是由谷歌官方在2013年I/O大会推出的,另一方面大家都说它很优秀。Volley 非常适合去进行数据量不大,但通信频繁的网络操作。Volley 可以传输 String 、Json,还可以很方便的加载图片。它的用法很简单,无非就是获取一个 RequestQueue
,把请求 request
加入其中。网上的介绍也很多,这里就不多说了。
那么 RequestQueue
是怎么工作的? 它跟 request
什么关系? Volley 是怎么处理Cache
的?这篇文章深入 Volley 的源码,了解它的工作流程。
RequestQueue
使用 Volley 的时候,需要先获得一个 RequestQueue
对象。它用于添加各种请求任务,通常是调用 Volly.newRequestQueue()
方法获取一个默认的 RequestQueue
。我们就从这个方法开始,下面是它的源码:
public static RequestQueue newRequestQueue(Context context) {
return newRequestQueue(context, null);
}
public static RequestQueue newRequestQueue(Context context, HttpStack stack) {
File cacheDir = new File(context.getCacheDir(), DEFAULT_CACHE_DIR);
String userAgent = "volley/0";
try {
String packageName = context.getPackageName();
PackageInfo info = context.getPackageManager().getPackageInfo(packageName, 0);
userAgent = packageName + "/" + info.versionCode;
} catch (NameNotFoundException e) {
}
if (stack == null) {
if (Build.VERSION.SDK_INT >= 9) {
stack = new HurlStack();
} else {
// Prior to Gingerbread, HttpUrlConnection was unreliable.
// See: http://android-developers.blogspot.com/2011/09/androids-http-clients.html
stack = new HttpClientStack(AndroidHttpClient.newInstance(userAgent));
}
}
Network network = new BasicNetwork(stack);
RequestQueue queue = new RequestQueue(new DiskBasedCache(cacheDir), network);
queue.start();
return queue;
}
newRequestQueue(context)
调用了它的重载方法 newRequestQueue(context,null)
。在这个方法中,先是通过 context 获得了缓存目录并且构建了 userAgent 信息。接着判断 stack 是否为空,从上面的调用可以知道,默认情况下 stack==null, 所以新建一个 stack 对象。根据系统版本不同,在版本号大于 9 时,stack 为 HurlStack,否则为 HttpClientStack。它们的区别是,HurlStack 使用 HttpUrlConnection 进行网络通信,而 HttpClientStack 使用 HttpClient。有了 stack 后,用它创建了一个 BasicNetWork 对象,可以猜到它是用来处理网络请求任务的。紧接着,新建了一个 RequestQueue
,这也是最终返回给我们的请求队列。这个 RequestQueue
接受两个参数,第一个是 DiskBasedCache
对象,从名字就可以看出这是用于硬盘缓存的,并且缓存目录就是方法一开始取得的 cacheDir;第二个参数是刚刚创建的 network 对象。最后调用 queue.start()
启动请求队列。
在分析 start() 之前,先来了解一下 RequestQueue
一些关键的内部变量以及构造方法:
//重复的请求将加入这个集合
private final Map<String, Queue<Request>> mWaitingRequests =
new HashMap<String, Queue<Request>>();
//所有正在处理的请求任务的集合
private final Set<Request> mCurrentRequests = new HashSet<Request>();
//缓存任务的队列
private final PriorityBlockingQueue<Request> mCacheQueue =
new PriorityBlockingQueue<Request>();
//网络请求队列
private final PriorityBlockingQueue<Request> mNetworkQueue =
new PriorityBlockingQueue<Request>();
//默认线程池大小
private static final int DEFAULT_NETWORK_THREAD_POOL_SIZE = 4;
//用于响应数据的存储与获取
private final Cache mCache;
//用于网络请求
private final Network mNetwork;
//用于分发响应数据
private final ResponseDelivery mDelivery;
//网络请求调度
private NetworkDispatcher[] mDispatchers;
//缓存调度
private CacheDispatcher mCacheDispatcher;
public RequestQueue(Cache cache, Network network) {
this(cache, network, DEFAULT_NETWORK_THREAD_POOL_SIZE);
}
public RequestQueue(Cache cache, Network network, int threadPoolSize) {
this(cache, network, threadPoolSize,
new ExecutorDelivery(new Handler(Looper.getMainLooper())));
}
public RequestQueue(Cache cache, Network network, int threadPoolSize,
ResponseDelivery delivery) {
mCache = cache;
mNetwork = network;
mDispatchers = new NetworkDispatcher[threadPoolSize];
mDelivery = delivery;
}
RequestQueue
有多个构造方法,最终都会调用最后一个。在这个方法中,mCache
和 mNetWork
分别设置为 newRequestQueue 中传来的 DiskBasedCache 和 BasicNetWork。mDispatchers
为网络请求调度器的数组,默认大小 4 (DEFAULT_NETWORK_THREAD_POOL_SIZE
)。mDelivery
设置为 new ExecutorDelivery(new Handler(Looper.getMainLooper())),它用于响应数据的传递,后面会具体介绍。可以看出,其实我们可以自己定制一个 RequestQueue
而不一定要用默认的 newRequestQueue。
下面就来看看 start()
方法是如何启动请求队列的:
public void start() {
stop(); // Make sure any currently running dispatchers are stopped.
// Create the cache dispatcher and start it.
mCacheDispatcher = new CacheDispatcher(mCacheQueue, mNetworkQueue, mCache, mDelivery);
mCacheDispatcher.start();
// Create network dispatchers (and corresponding threads) up to the pool size.
for (int i = 0; i < mDispatchers.length; i++) {
NetworkDispatcher networkDispatcher = new NetworkDispatcher(mNetworkQueue, mNetwork,
mCache, mDelivery);
mDispatchers[i] = networkDispatcher;
networkDispatcher.start();
}
}
代码比较简单,就做了两件事。第一,创建并且启动一个 CacheDispatcher
。第二,创建并启动四个 NetworkDispatcher
。所谓的启动请求队列就是把任务交给缓存调度器和网络请求调度器处理。
这里还有个问题,请求任务是怎么加入请求队列的?其实就是调用了 add()
方法。现在看看它内部怎么处理的:
public Request add(Request request) {
// Tag the request as belonging to this queue and add it to the set of current requests.
request.setRequestQueue(this);
synchronized (mCurrentRequests) {
mCurrentRequests.add(request);
}
// Process requests in the order they are added.
request.setSequence(getSequenceNumber());
request.addMarker("add-to-queue");
// If the request is uncacheable, skip the cache queue and go straight to the network.
if (!request.shouldCache()) {
mNetworkQueue.add(request);
return request;
}
// Insert request into stage if there's already a request with the same cache key in flight.
synchronized (mWaitingRequests) {
String cacheKey = request.getCacheKey();
if (mWaitingRequests.containsKey(cacheKey)) {
// There is already a request in flight. Queue up.
Queue<Request> stagedRequests = mWaitingRequests.get(cacheKey);
if (stagedRequests == null) {
stagedRequests = new LinkedList<Request>();
}
stagedRequests.add(request);
mWaitingRequests.put(cacheKey, stagedRequests);
if (VolleyLog.DEBUG) {
VolleyLog.v("Request for cacheKey=%s is in flight, putting on hold.", cacheKey);
}
} else {
// Insert 'null' queue for this cacheKey, indicating there is now a request in
// flight.
mWaitingRequests.put(cacheKey, null);
mCacheQueue.add(request);
}
return request;
}
}
这个方法的代码稍微有点长,但逻辑并不复杂。首先把这个任务加入 mCurrentRequests
,然后判断是否需要缓存,不需要的话就直接加入网络请求任务队列 mNetworkQueue
然后返回。默认所有任务都需要缓存,可以调用 setShouldCache(boolean shouldCache)
来更改设置。所有需要缓存的都会加入缓存任务队列 mCacheQueue
。不过先要判断 mWaitingRequests
是不是已经有了,避免重复的请求。
Dispatcher
RequestQueue
调用 start() 之后,请求任务就被交给 CacheDispatcher
和 NetworkDispatcher
处理了。它们都继承自 Thread,其实就是后台工作线程,分别负责从缓存和网络获取数据。
CacheDispatcher
CacheDispatcher
不断从 mCacheQueue
取出任务处理,下面是它的 run()
方法:
public void run() {
if (DEBUG) VolleyLog.v("start new dispatcher");
Process.setThreadPriority(Process.THREAD_PRIORITY_BACKGROUND);
// Make a blocking call to initialize the cache.
mCache.initialize();
while (true) {
try {
// Get a request from the cache triage queue, blocking until
// at least one is available. 取出缓存队列的任务
final Request request = mCacheQueue.take();
request.addMarker("cache-queue-take");
// If the request has been canceled, don't bother dispatching it.
if (request.isCanceled()) {
request.finish("cache-discard-canceled");
continue;
}
// Attempt to retrieve this item from cache.
Cache.Entry entry = mCache.get(request.getCacheKey());
if (entry == null) {
request.addMarker("cache-miss");
// Cache miss; send off to the network dispatcher.
mNetworkQueue.put(request);
continue;
}
// If it is completely expired, just send it to the network.
if (entry.isExpired()) {
request.addMarker("cache-hit-expired");
request.setCacheEntry(entry);
mNetworkQueue.put(request);
continue;
}
// We have a cache hit; parse its data for delivery back to the request.
request.addMarker("cache-hit");
Response<?> response = request.parseNetworkResponse(
new NetworkResponse(entry.data, entry.responseHeaders));
request.addMarker("cache-hit-parsed");
if (!entry.refreshNeeded()) {
// Completely unexpired cache hit. Just deliver the response.
mDelivery.postResponse(request, response);
} else {
// Soft-expired cache hit. We can deliver the cached response,
// but we need to also send the request to the network for
// refreshing.
request.addMarker("cache-hit-refresh-needed");
request.setCacheEntry(entry);
// Mark the response as intermediate.
response.intermediate = true;
// Post the intermediate response back to the user and have
// the delivery then forward the request along to the network.
mDelivery.postResponse(request, response, new Runnable() {
@Override
public void run() {
try {
mNetworkQueue.put(request);
} catch (InterruptedException e) {
// Not much we can do about this.
}
}
});
}
} catch (InterruptedException e) {
// We may have been interrupted because it was time to quit.
if (mQuit) {
return;
}
continue;
}
}
}
首先是调用 mCache.initialize()
初始化缓存,然后是一个 while(true) 死循环。在循环中,取出缓存队列的任务。先判断任务是否取消,如果是就执行 request.finish("cache-discard-canceled")
然后跳过下面的代码重新开始循环,否则从缓存中找这个任务是否有缓存数据。如果缓存数据不存在,把任务加入网络请求队列,并且跳过下面的代码重新开始循环。如果找到了缓存,就判断是否过期,过期的还是要加入网络请求队列,否则调用 request
的parseNetworkResponse
解析响应数据。最后一步是判断缓存数据的新鲜度,不需要刷新新鲜度的直接调用 mDelivery.postResponse(request, response)
传递响应数据,否则依然要加入 mNetworkQueue
进行新鲜度验证。
上面的代码逻辑其实不是很复杂,但描述起来比较绕,下面这张图可以帮助理解:
NetworkDispatcher
CacheDispatcher
从缓存中寻找任务的响应数据,如果任务没有缓存或者缓存失效就要交给 NetworkDispatcher
处理了。它不断从网络请求任务队列中取出任务执行。下面是它的 run()
方法:
public void run() {
Process.setThreadPriority(Process.THREAD_PRIORITY_BACKGROUND);
Request request;
while (true) {
try {
// Take a request from the queue.
request = mQueue.take();
} catch (InterruptedException e) {
// We may have been interrupted because it was time to quit.
if (mQuit) {
return;
}
continue;
}
try {
request.addMarker("network-queue-take");
// If the request was cancelled already, do not perform the
// network request.
if (request.isCanceled()) {
request.finish("network-discard-cancelled");
continue;
}
// Tag the request (if API >= 14)
if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.ICE_CREAM_SANDWICH) {
TrafficStats.setThreadStatsTag(request.getTrafficStatsTag());
}
// Perform the network request. 发送网络请求
NetworkResponse networkResponse = mNetwork.performRequest(request);
request.addMarker("network-http-complete");
// If the server returned 304 AND we delivered a response already,
// we're done -- don't deliver a second identical response.
if (networkResponse.notModified && request.hasHadResponseDelivered()) {
request.finish("not-modified");
continue;
}
// Parse the response here on the worker thread.
Response<?> response = request.parseNetworkResponse(networkResponse);
request.addMarker("network-parse-complete");
// Write to cache if applicable.
// TODO: Only update cache metadata instead of entire record for 304s.
if (request.shouldCache() && response.cacheEntry != null) {
mCache.put(request.getCacheKey(), response.cacheEntry);
request.addMarker("network-cache-written");
}
// Post the response back.
request.markDelivered();
mDelivery.postResponse(request, response);
} catch (VolleyError volleyError) {
parseAndDeliverNetworkError(request, volleyError);
} catch (Exception e) {
VolleyLog.e(e, "Unhandled exception %s", e.toString());
mDelivery.postError(request, new VolleyError(e));
}
}
}
可以看出,run()
方法里面依然是个无限循环。从队列中取出一个任务,然后判断任务是否取消。如果没有取消就调用 mNetwork.performRequest(request)
获取响应数据。如果数据是 304 响应并且已经有这个任务的数据传递,说明这是 CacheDispatcher
中验证新鲜度的请求并且不需要刷新新鲜度,所以跳过下面的代码重新开始循环。否则继续下一步,解析响应数据,看看数据是不是要缓存。最后调用 mDelivery.postResponse(request, response)
传递响应数据。下面这张图展示了这个方法的流程:
Delivery
在 CacheDispatcher
和 NetworkDispatcher
中,获得任务的数据之后都是通过 mDelivery.postResponse(request, response)
传递数据。我们知道 Dispatcher 是另开的线程,所以必须把它们获取的数据通过某种方法传递到主线程,来看看 Deliver 是怎么做的。mDelivery
的类型为 ExecutorDelivery
,下面是它的 postResponse
方法源码:
public void postResponse(Request<?> request, Response<?> response) {
postResponse(request, response, null);
}
public void postResponse(Request<?> request, Response<?> response, Runnable runnable) {
request.markDelivered();
request.addMarker("post-response");
mResponsePoster.execute(new ResponseDeliveryRunnable(request, response, runnable));
}
从上面的代码可以看出,最终是通过调用 mResponsePoster.execute(new ResponseDeliveryRunnable(request, response, runnable))
进行数据传递。这里的 mResponsePoster
是一个 Executor
对象。
private final Executor mResponsePoster;
public ExecutorDelivery(final Handler handler) {
// Make an Executor that just wraps the handler.
mResponsePoster = new Executor() {
@Override
public void execute(Runnable command) {
handler.post(command);
}
};
Executor
是线程池框架接口,里面只有一个 execute()
方法,mResponsePoster
的这个方法实现为用 handler
传递 Runnable 对象。而在 postResponse
方法中,request
和 response
被封装为 ResponseDeliveryRunnable
, 它正是一个 Runnable 对象。所以响应数据就是通过 handler
传递的,那么这个 handler
是哪里来的?其实在介绍 RequestQueue
的时候已经提到了:mDelivery
设置为 new ExecutorDelivery(new Handler(Looper.getMainLooper())),这个 handler
便是 new Handler(Looper.getMainLooper())
,是与主线程的消息循环连接在一起的,这样数据便成功传递到主线程了。
总结
Volley 的基本工作原理就是这样,用一张图总结一下它的运行流程:
参考