Lowest Common Ancestor of a Binary Search Tree
Given a binary search tree (BST), find the lowest common ancestor (LCA) of two given nodes in the BST.
According to the definition of LCA on Wikipedia: “The lowest common ancestor is defined between two nodes v and w as the lowest node in T that has both v and w as descendants (where we allow a node to be a descendant of itself).”
_______6______ / \ ___2__ ___8__ / \ / \ 0 _4 7 9 / \ 3 5
For example, the lowest common ancestor (LCA) of nodes 2 and 8 is 6. Another example is LCA of nodes 2 and 4 is 2, since a node can be a descendant of itself according to the LCA definition.
二分法
复杂度
时间 O(h) 空间 O(h) 递归栈空间
思路
对于二叉搜索树,公共祖先的值一定大于等于较小的节点,小于等于较大的节点。换言之,在遍历树的时候,如果当前结点大于两个节点,则结果在当前结点的左子树里,如果当前结点小于两个节点,则结果在当前节点的右子树里。
代码
public class Solution {
public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
if(root.val > p.val && root.val > q.val) return lowestCommonAncestor(root.left, p, q);
if(root.val < p.val && root.val < q.val) return lowestCommonAncestor(root.right, p, q);
return root;
}
}
Lowest Common Ancestor of a Binary Tree
Given a binary tree, find the lowest common ancestor (LCA) of two given nodes in the tree.
According to the definition of LCA on Wikipedia: “The lowest common ancestor is defined between two nodes v and w as the lowest node in T that has both v and w as descendants (where we allow a node to be a descendant of itself).”
_______3______ / \ ___5__ ___1__ / \ / \ 6 _2 0 8 / \ 7 4
For example, the lowest common ancestor (LCA) of nodes 5 and 1 is 3. Another example is LCA of nodes 5 and 4 is 5, since a node can be a descendant of itself according to the LCA definition.
深度优先标记
复杂度
时间 O(h) 空间 O(h) 递归栈空间
思路
我们可以用深度优先搜索,从叶子节点向上,标记子树中出现目标节点的情况。如果子树中有目标节点,标记为那个目标节点,如果没有,标记为null。显然,如果左子树、右子树都有标记,说明就已经找到最小公共祖先了。如果在根节点为p的左右子树中找p、q的公共祖先,则必定是p本身。
换个角度,可以这么想:如果一个节点左子树有两个目标节点中的一个,右子树没有,那这个节点肯定不是最小公共祖先。如果一个节点右子树有两个目标节点中的一个,左子树没有,那这个节点肯定也不是最小公共祖先。只有一个节点正好左子树有,右子树也有的时候,才是最小公共祖先。
代码
public class Solution {
public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
//发现目标节点则通过返回值标记该子树发现了某个目标结点
if(root == null || root == p || root == q) return root;
//查看左子树中是否有目标结点,没有为null
TreeNode left = lowestCommonAncestor(root.left, p, q);
//查看右子树是否有目标节点,没有为null
TreeNode right = lowestCommonAncestor(root.right, p, q);
//都不为空,说明做右子树都有目标结点,则公共祖先就是本身
if(left!=null&&right!=null) return root;
//如果发现了目标节点,则继续向上标记为该目标节点
return left == null ? right : left;
}
}