Graph Valid Tree
Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), write a function to check whether these edges make up a valid tree.
For example:
Given n = 5 and edges = [[0, 1], [0, 2], [0, 3], [1, 4]], return true.
Given n = 5 and edges = [[0, 1], [1, 2], [2, 3], [1, 3], [1, 4]], return false.
Hint:
Given n = 5 and edges = [[0, 1], [1, 2], [3, 4]], what should your return? Is this case a valid tree? Show More Hint Note: you can assume that no duplicate edges will appear in edges. Since all edges are undirected, [0, 1] is the same as [1, 0] and thus will not appear together in edges.
并查集
复杂度
时间 O(N^M) 空间 O(1)
思路
判断输入的边是否能构成一个树,我们需要确定两件事:
这些边是否构成环路,如果有环则不能构成树
这些边是否能将所有节点连通,如果有不能连通的节点则不能构成树
因为不需要知道具体的树长什么样子,只要知道连通的关系,所以并查集相比深度优先搜索是更好的方法。我们定义一个并查集的数据结构,并提供标准的四个接口:
union
将两个节点放入一个集合中find
找到该节点所属的集合编号areConnected
判断两个节点是否是一个集合count
返回该并查集中有多少个独立的集合
具体并查集的原理,参见这篇文章。简单来讲,就是先构建一个数组,节点0到节点n-1,刚开始都各自独立的属于自己的集合。这时集合的编号是节点号。然后,每次union操作时,我们把整个并查集中,所有和第一个节点所属集合号相同的节点的集合号,都改成第二个节点的集合号。这样就将一个集合的节点归属到同一个集合号下了。我们遍历一遍输入,把所有边加入我们的并查集中,加的同时判断是否有环路。最后如果并查集中只有一个集合,则说明可以构建树。
注意
因为要判断是否会产生环路,union方法要返回一个boolean,如果两个节点本来就在一个集合中,就返回假,说明有环路
代码
public class Solution {
public boolean validTree(int n, int[][] edges) {
UnionFind uf = new UnionFind(n);
for(int i = 0; i < edges.length; i++){
// 如果两个节点已经在同一集合中,说明新的边将产生环路
if(!uf.union(edges[i][0], edges[i][1])){
return false;
}
}
return uf.count() == 1;
}
public class UnionFind {
int[] ids;
int cnt;
public UnionFind(int size){
this.ids = new int[size];
//初始化并查集,每个节点对应自己的集合号
for(int i = 0; i < this.ids.length; i++){
this.ids[i] = i;
}
this.cnt = size;
}
public boolean union(int m, int n){
int src = find(m);
int dst = find(n);
//如果两个节点不在同一集合中,将两个集合合并为一个
if(src != dst){
for(int i = 0; i < ids.length; i++){
if(ids[i] == src){
ids[i] = dst;
}
}
// 合并完集合后,集合数减一
cnt--;
return true;
} else {
return false;
}
}
public int find(int m){
return ids[m];
}
public boolean areConnected(int m, int n){
return find(m) == find(n);
}
public int count(){
return cnt;
}
}
}