Problem 最长连续递增/递减子序列
Give an integer array,find the longest increasing continuous subsequence in this array.
An increasing continuous subsequence:
Can be from right to left or from left to right.
Indices of the integers in the subsequence should be continuous.
Example
For [5, 4, 2, 1, 3], the LICS is [5, 4, 2, 1], return 4.
For [5, 1, 2, 3, 4], the LICS is [1, 2, 3, 4], return 4.
Note
设置正向计数器,后一位增加则计数器加1,否则置1。反向计数器亦然。
每一次比较后将较大值存入max。
Solution
O(1) space, O(n) time
public class Solution {
public int longestIncreasingContinuousSubsequence(int[] A) {
if (A == null || A.length == 0) return 0;
int n = A.length;
int count = 1, countn = 1, max = 1;
int i = 1;
while (i != n) {
if (A[i] >= A[i-1]) {
count++;
countn = 1;
max = Math.max(max, count);
}
else {
countn++;
count = 1;
max = Math.max(max, countn);
}
i++;
}
return max;
}
}
DP using two dp arrays, O(n) space
public class Solution {
public int longestIncreasingContinuousSubsequence(int[] A) {
if (A == null || A.length == 0) return 0;
int n = A.length;
if (n == 1) return 1;
int[] dp = new int[n];
int[] pd = new int[n];
int maxdp = 0, maxpd = 0;
dp[0] = 1;
for (int i = 1; i < n; i++) {
dp[i] = A[i] >= A[i-1] ? dp[i-1]+1 : 1;
maxdp = Math.max(maxdp, dp[i]);
}
pd[n-1] = 1;
for (int i = n-2; i >= 0; i--) {
pd[i] = A[i] >= A[i+1] ? pd[i+1]+1 : 1;
maxpd = Math.max(maxpd, pd[i]);
}
return Math.max(maxdp, maxpd);
}
}
DP using one dp arrays, O(n) space
public class Solution {
public int longestIncreasingContinuousSubsequence(int[] A) {
if (A == null || A.length == 0) return 0;
int n = A.length;
if (n == 1) return 1;
int[] dp = new int[n];
int maxdp = 0, maxpd = 0;
dp[0] = 1;
for (int i = 1; i < n; i++) {
dp[i] = A[i] >= A[i-1] ? dp[i-1]+1 : 1;
maxdp = Math.max(maxdp, dp[i]);
}
for (int i = 1; i < n; i++) {
dp[i] = A[i] <= A[i-1] ? dp[i-1]+1 : 1;
maxpd = Math.max(maxpd, dp[i]);
}
return Math.max(maxdp, maxpd);
}
}