Problem
Given a sorted array of n integers, find the starting and ending position of a given target value.
If the target is not found in the array, return [-1, -1]
.
Example
Given [5, 7, 7, 8, 8, 10]
and target value 8
,
return [3, 4]
.
Challenge
O(log n)
time.
Note
首先,建立二元结果数组res,起点start,终点end。
二分法求左边界:
当中点小于target,start移向中点,否则end移向中点;
先判断起点,再判断终点是否等于target,如果是,赋值给res[0]。
二分法求右边界:
当中点大于target,end移向中点,否则start移向中点;
先判断终点,再判断起点是否等于target,如果是,赋值给res[1]。
返回res。
Solution
public class Solution {
public int[] searchRange(int[] A, int target) {
int []res = {-1, -1};
if (A == null || A.length == 0) return res;
int start = 0, end = A.length - 1;
int mid;
while (start + 1 < end) {
mid = start + (end - start) / 2;
if (A[mid] < target) start = mid;
else end = mid;
}
if (A[start] == target) res[0] = start;
else if (A[end] == target) res[0] = end;
else return res;
start = 0;
end = A.length - 1;
while (start + 1 < end) {
mid = start + (end - start) / 2;
if (A[mid] > target) end = mid;
else start = mid;
}
if (A[end] == target) res[1] = end;
else if (A[start] == target) res[1] = start;
else return res;
return res;
}
}
Another Binary Search Method
public class Solution {
public int[] searchRange(int[] nums, int target) {
int n = nums.length;
int[] res = {-1, -1};
int start = 0, end = n-1;
while (nums[start] < nums[end]) {
int mid = start + (end - start) / 2;
if (nums[mid] > target) end = mid - 1;
else if (nums[mid] < target) start = mid + 1;
else {
if (nums[start] < target) start++;
if (nums[end] > target) end--;
}
}
if (nums[start] == target) {
res[0] = start;
res[1] = end;
}
return res;
}
}