Problem
Given a binary tree, determine if it is height-balanced.
For this problem, a height-balanced binary tree is defined as a binary tree in which the depth of the two subtrees of every node never differ by more than 1.
Example
Given binary tree A={3,9,20,#,#,15,7}
, B={3,#,20,15,7}
A) 3 B) 3
/ \ \
9 20 20
/ \ / \
15 7 15 7
The binary tree A is a height-balanced binary tree, but B is not.
Note
根据二叉平衡树的定义,我们先写一个求二叉树最大深度的函数depth()
。在主函数中,利用比较左右子树depth
的差值来判断当前结点的平衡性,如果不满足则返回false
。然后递归当前结点的左右子树,得到结果。
Solution
public class Solution {
public boolean isBalanced(TreeNode root) {
if (root == null) return true;
if (Math.abs(depth(root.left)-depth(root.right)) > 1) return false;
return isBalanced(root.left) && isBalanced(root.right);
}
public int depth(TreeNode root) {
if (root == null) return 0;
return Math.max(depth(root.left), depth(root.right))+1;
}
}