Problem
Follow up for "Unique Paths":
Now consider if some obstacles are added to the grids. How many unique paths would there be?
An obstacle and empty space is marked as 1 and 0 respectively in the grid.
Notice
m and n will be at most 100.
Example
For example,
There is one obstacle in the middle of a 3x3 grid as illustrated below.
[
[0,0,0],
[0,1,0],
[0,0,0]
]
The total number of unique paths is 2.
Note
和Unique Path完全一样的做法,只要在初始化首行和首列遇到obstacle时置零且break即可。对了,数组其它元素遇到obstacle也要置零喏,不过就不要break啦。
Solution
二维DP
public class Solution {
public int uniquePathsWithObstacles(int[][] A) {
int m = A.length, n = A[0].length;
int[][] dp = new int[m][n];
for (int i = 0; i < m; i++) {
if (A[i][0] == 0) dp[i][0] = 1;
else break;
}
for (int j = 0; j < n; j++) {
if (A[0][j] == 0) dp[0][j] = 1;
else break;
}
for (int i = 1; i < m; i++) {
for (int j = 1; j < n; j++) {
if (A[i][j] == 0) dp[i][j] = dp[i-1][j] + dp[i][j-1];
}
}
return dp[m-1][n-1];
}
}
一维DP
public class Solution {
public int uniquePathsWithObstacles(int[][] A) {
int n = A[0].length;
int[] dp = new int[n];
dp[0] = 1;
for (int i = 0; i < A.length; i++) {
for (int j = 0; j < n; j++) {
if (A[i][j] == 1) dp[j] = 0;
else if (j > 0) dp[j] += dp[j-1];
}
}
return dp[n-1];
}
}