题目:
Sort a linked list in O(n log n) time using constant space complexity.
解答:
(对于discuss中第二个最优解的解释)
根据时间复杂度的要求,很容易想到应该用merge sort的方法来做,那么就有两个步骤,分和法。先把整个list分成两部分,这里可以用找中间值的方法,在找中间值的同时,标记一下中间值的前一个node,也就是第一个list的最后一个node,然后找到中间值之前,将最后一个node的下一位标记为null,就成功地将这个list分成了两部分;接下来是merge, 那就建一个新的list,将两个sort好的list按最小数的大小依次放进新list中,最后返回merge的list。解法如下:
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
public class Solution {
public ListNode sortList(ListNode head) {
if (head == null || head.next == null) return head;
//seperate the list into two parts
//Track the last node of first list and point the end to null
ListNode prev = null;
ListNode slow = head, fast = head;
while (fast != null && fast.next != null) {
prev = slow;
slow = slow.next;
fast = fast.next.next;
}
prev.next = null;
ListNode l1 = sortList(head);
ListNode l2 = sortList(slow);
return merge(l1, l2);
}
public ListNode merge(ListNode l1, ListNode l2) {
ListNode dummy = new ListNode(0);
ListNode l = dummy;
while (l1 != null && l2 != null) {
if (l1.val < l2.val) {
l.next = l1;
l1 = l1.next;
} else {
l.next = l2;
l2 = l2.next;
}
l = l.next;
}
while (l1 != null) {
l.next = l1;
l1 = l1.next;
l = l.next;
}
while (l2 != null) {
l.next = l2;
l2 = l2.next;
l = l.next;
}
return dummy.next;
}
}