Problem
Given a square matrix of size N x N, calculate the absolute difference between the sums of its diagonals.
Input Format
The first line contains a single integer, N. The next N lines denote the matrix's rows, with each line containing N space-separated integers describing the columns.
Output Format
Print the absolute difference between the two sums of the matrix's diagonals as a single integer.
Sample Input
3
11 2 4
4 5 6
10 8 -12
Sample Output
15
Explanation
The primary diagonal is:
11
5
-12
Sum across the primary diagonal: 11 + 5 - 12 = 4
The secondary diagonal is:
4
5
10
Sum across the secondary diagonal: 4 + 5 + 10 = 19
Difference: |4 - 19| = 15
Solution
import java.io.*;
import java.util.*;
public class Solution {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int n = in.nextInt();
int pSum = 0, sSum = 0;
int a[][] = new int[n][n];
for(int i = 0; i < n; i++){
for(int j = 0; j < n; j++){
a[i][j] = in.nextInt();
}
}
for(int i=0; i<n; i++){
pSum += a[i][i];
sSum += a[i][n-1-i];
}
int sum = Math.abs(pSum - sSum);
System.out.println(sum);
}
}