[LintCode/LeetCode] N-Queens I & II [N皇后]

421 查看

N-Queens

Problem

The n-queens puzzle is the problem of placing n queens on an n×n chessboard such that no two queens attack each other.

Given an integer n, return all distinct solutions to the n-queens puzzle.

Each solution contains a distinct board configuration of the n-queens' placement, where 'Q' and '.' both indicate a queen and an empty space respectively.

Example

There exist two distinct solutions to the 4-queens puzzle:

[
  // Solution 1
  [".Q..",
   "...Q",
   "Q...",
   "..Q."
  ],
  // Solution 2
  ["..Q.",
   "Q...",
   "...Q",
   ".Q.."
  ]
]

Challenge

Can you do it without recursion?

Note

写一种常规方法好了:

首先对于放皇后的流程有一个概念:

  1. 结果数组res的形式:包含所有满足条件的,长度为n(row行)的字符串数组cur;每个字符串代表一行的皇后摆法;

  2. 首先,在主函数中向结果数组res的一个子集cur,并初始化这个cur中所有元素为长度为n且所有字符都是'.'的字符串;然后调用helper函数;

  3. helper函数中,结果数组res,目标行数n,和基本子集cur都是确定的,唯一的变量是会被递归的当前行数row,我们会从基本子集cur中取出这一行进行修改:遍历这一行的每个元素,即遍历列数j,然后在第row行第j列的这个元素为'Q'满足N皇后条件isValid(n, cur, row, j)的情况下,将这个元素设为'Q'。有点拗口?这样吧,先看看isValid(n, cur, row, col)的意思:

  4. isValid()就是当我们想在第i行j列放上Queen的时候,先遍历上面的i-1行,判断有没有能攻击到当前皇后的皇后。

  5. 所以在helper函数中,若之前的行中没有威胁到当前遍历到的第row行第j列这个皇后的其它皇后的话,就更新这一行并存入子集cur,然后递归下一行。递归之后,再将这个皇后换成字符'.',以便在下一个循环中将第j+1个字符设为皇后并递归。

  6. helper函数第n-1次递归的时候,row == n,此时将已经完成皇后排列的当前子集cur放入res;那么res中总共有多少个子集cur呢?Move on to N-Queens II.

Solution

public class Solution {
    public List<List<String>> solveNQueens(int n) {
        List<List<String>> res = new ArrayList<>();
        List<String> cur = new ArrayList<>();
        StringBuilder sb = new StringBuilder();
        for (int i = 0; i < n; i++) sb.append('.');
        for (int i = 0; i < n; i++) cur.add(sb.toString());
        dfs(n, 0, cur, res);
        return res;
    }
    public void dfs(int n, int row, List<String> cur, List<List<String>> res) {
        if (row == n) {
            List<String> copy = new ArrayList<>();
            for (int i = 0; i < n; i++) copy.add(cur.get(i));
            res.add(copy);
            return;
        }
        for (int j = 0; j < n; j++) {
            if (isValid(cur, n, row, j)) {
                StringBuilder sb = new StringBuilder();
                sb.append(cur.get(row));
                sb.setCharAt(j, 'Q');
                cur.set(row, sb.toString());
                dfs(n, row+1, cur, res);
                sb.setCharAt(j, '.');
                cur.set(row, sb.toString());
            }
        }
    }
    public boolean isValid(List<String> cur, int n, int row, int col) {
        for (int i = 0; i < row; i++) {
            for (int j = 0; j < n; j++) {
                if (cur.get(i).charAt(j) == 'Q' && (j == col || Math.abs(row-i) == Math.abs(col-j))) return false;
            }
        }
        return true;
    }
}

Better Solution, WAY BETTER...

public class Solution {
    private List<List<String>> res;
    public List<List<String>> solveNQueens(int n) {
        res = new ArrayList<>();
        StringBuilder[] board = new StringBuilder[n];
        for(int i =0;i<n;i++){                //initialize
            board[i] = new StringBuilder();
            for(int j=0;j<n;j++)    board[i].append('.');
        }
        int [] visited = new int[n];
        int[] set1 = new int[2*n];   // i+j
        int[] set2 = new int[2*n];   // i-j
        dfs(board,set1,set2,visited,0);
        return res;
    }
    
    public void dfs(StringBuilder[] board,int[] set1,int[] set2,int [] visited,int idx){
        int n = board.length;
        if(idx==n){
            List<String> a = new ArrayList<>();
            for(int i =0;i<n;i++){
                a.add(board[i].toString());
            }
            res.add(a);
            return;
        }
        for(int j = 0;j<n;j++){
            if(visited[j]==0&&set1[idx+j]==0&&set2[n+idx-j]==0){
                visited[j] = 1;
                set1[idx+j] = 1;
                set2[n+idx-j] = 1;
                board[idx].setCharAt(j,'Q');
                dfs(board,set1,set2,visited,idx+1);
                visited[j] = 0;
                set1[idx+j] = 0;
                set2[n+idx-j] = 0;
                board[idx].setCharAt(j,'.');
            }
        }    
    }
}

N-Queens II

Problem

Follow up for N-Queens problem.

Now, instead outputting board configurations, return the total number of distinct solutions.

Example

For n=4, there are 2 distinct solutions.

Note

N-Queens一模一样,用计数器统计能完整递归的次数:每次对子集cur递归到row == n时,只要计数器count++即可。

Solution

class Solution {
    int count = 0;
    int totalNQueens(int n) {
        ArrayList<ArrayList<String>> res = new ArrayList();
        ArrayList<String> cur = new ArrayList();
        StringBuilder sb = new StringBuilder();
        for (int i = 0; i < n; i++) sb.append('.');
        for (int i = 0; i < n; i++) cur.add(sb.toString());
        return helper(0, n, cur);
    }
    int helper(int row, int n, ArrayList<String> cur) {
        if (row == n) count++;
        for (int j = 0; j < n; j++) {
            if (isValid(row, j, n, cur)) {
                StringBuilder sb = new StringBuilder(cur.get(row));
                sb.setCharAt(j, 'Q');
                cur.set(row, sb.toString());
                helper(row+1, n, cur);
                sb.setCharAt(j, '.');
                cur.set(row, sb.toString());
            }
        }
        return count;
    }
    boolean isValid(int row, int col, int n, ArrayList<String> cur) {
        for (int i = 0; i < row; i++) {
            for (int j = 0; j < n; j++) {
                if (cur.get(i).charAt(j) == 'Q' && (col == j || Math.abs(row-i) == Math.abs(col-j))) return false;
            }
        }
        return true;
    }
}

Better Solution

public class Solution {
    public static int count;
    public int totalNQueens(int n) {
        count = 0;
        int[] visited = new int[n];
        int[] set1 = new int[2*n];   //i+j
        int[] set2 = new int[2*n];   // i-j
        dfs(n, set1, set2, visited, 0);
        return count;
    }
    public void dfs(int n, int[] set1,int[] set2,int[] visited, int idx){
        if(idx == n){
            count++;
            return;
        }
        for(int j = 0;j < n;j++){
            if(visited[j] == 0 && set1[idx+j] == 0 && set2[n+idx-j] == 0){
                visited[j] = 1;
                set1[idx+j] = 1;
                set2[n+idx-j] = 1;
                dfs(n,set1,set2,visited,idx+1);
                visited[j] = 0;
                set1[idx+j] = 0;
                set2[n+idx-j] = 0;
            }
        }
    }
}