246.Strobogrammatic NumberI
题目:
A strobogrammatic number is a number that looks the same when rotated 180 degrees (looked at upside down).
Write a function to determine if a number is strobogrammatic. The number is represented as a string.
For example, the numbers "69", "88", and "818" are all strobogrammatic.
解答:
public class Solution {
//1, 6, 8, 9, 0
public boolean isStrobogrammatic(String num) {
Map<Integer, Integer> map = new HashMap<>();
map.put(1, 1); map.put(6, 9); map.put(8, 8); map.put(9, 6); map.put(0, 0);
int len = num.length();
for (int i = 0; i < len; i++) {
int c1 = num.charAt(i) - '0', c2 = num.charAt(len - 1 - i) - '0';
if (!map.containsKey(c1) || !map.containsKey(c2) || c1 != map.get(c2)) {
return false;
}
}
return true;
}
}
247.StroboGrammatic NumberII
题目:
A strobogrammatic number is a number that looks the same when rotated 180 degrees (looked at upside down).
Find all strobogrammatic numbers that are of length = n.
For example,
Given n = 2, return ["11","69","88","96"].
解答:
先考虑最底层的两种情况,当n == 0和当n == 1的时候,就是最中间的数为空还是存在唯一的一个数。然后我们在这个基础上,用循环两个数两个数地一起向外扩张。扩张后的结果存在result里,作为base再服务于上一层的扩张,得到最终结果。
public class Solution {
public List<String> helper(int n, int m) {
if (n == 0) return new ArrayList<String>(Arrays.asList(""));
if (n == 1) return new ArrayList<String>(Arrays.asList("0", "1", "8"));
List<String> list = helper(n - 2, m);
List<String> result = new ArrayList<String>();
for (int i = 0; i < list.size(); i++) {
String s = list.get(i);
if (n != m) result.add("0" + s + "0");
result.add("1" + s + "1");
result.add("8" + s + "8");
result.add("6" + s + "9");
result.add("9" + s + "6");
}
return result;
}
public List<String> findStrobogrammatic(int n) {
return helper(n, n);
}
}
248.Strobogrammatic NumberIII
题目:
A strobogrammatic number is a number that looks the same when rotated 180 degrees (looked at upside down).
Write a function to count the total strobogrammatic numbers that exist in the range of low <= num <= high.
For example,
Given low = "50", high = "100", return 3. Because 69, 88, and 96 are three strobogrammatic numbers.
Note:
Because the range might be a large number, the low and high numbers are represented as string.
解答:
有了上一题作基础,这里我们可以先求出所有长度满足的数,再通过与low,high的compare比较,选出最终的结果并count。
public class Solution {
public List<String> helper(int n, int max) {
if (n == 0) return new ArrayList<String>(Arrays.asList(""));
if (n == 1) return new ArrayList<String>(Arrays.asList("1", "8", "0"));
List<String> list = helper(n - 2, max);
List<String> result = new ArrayList<String>();
for (int i = 0; i < list.size(); i++) {
String s = list.get(i);
if (n != max) result.add("0" + s + "0");
result.add("1" + s + "1");
result.add("8" + s + "8");
result.add("6" + s + "9");
result.add("9" + s + "6");
}
return result;
}
public int strobogrammaticInRange(String low, String high) {
int count = 0;
List<String> result = new ArrayList<String>();
for (int i = low.length(); i <= high.length(); i++) {
result.addAll(helper(i, i));
}
for (String str : result) {
if (str.length() == low.length() && str.compareTo(low) < 0 || str.length() == high.length() && str.compareTo(high) > 0) continue;
count++;
}
return count;
}
}