题目:
Given an integer matrix, find the length of the longest increasing path.
From each cell, you can either move to four directions: left, right, up or down. You may NOT move diagonally or move outside of the boundary (i.e. wrap-around is not allowed).
Example 1:
nums = [
[9,9,4],
[6,6,8],
[2,1,1]
]
Return 4
The longest increasing path is [1, 2, 6, 9].
Example 2:
nums = [
[3,4,5],
[3,2,6],
[2,2,1]
]
Return 4
The longest increasing path is [3, 4, 5, 6]. Moving diagonally is not allowed.
解答:
最重要的是用cache保存每个扫过结点的最大路径。我开始做的时候,用全局变量记录的max, dfs没有返回值,这样很容易出错,因为任何一个用到max的环节都有可能改变max值,所以还是在函数中定义,把当前的max直接返回计算不容易出错。
public class Solution {
public int DFS(int[][] matrix, int i, int j, int[][] cache) {
if (cache[i][j] != 0) return cache[i][j];
//改进:记录下每一个访问过的点的最大长度,当重新访问到这个点的时候,就不需要重复计算
int[][] dir = {{0, 1}, {0, -1}, {1, 0}, {-1, 0}};
int max = 1;
for (int k = 0; k < dir.length; k++) {
int x = i + dir[k][0], y = j + dir[k][1];
if (x < 0 || x > matrix.length - 1 || y < 0 || y > matrix[0].length - 1) {
continue;
} else {
if (matrix[x][y] > matrix[i][j]) {
//这里当前结点只算长度1,然后加上dfs后子路径的长度,比较得出最大值
int len = 1 + DFS(matrix, x, y, cache);
max = Math.max(max, len);
}
}
}
cache[i][j] = max;
return max;
}
public int longestIncreasingPath(int[][] matrix) {
if (matrix == null || matrix.length == 0 || matrix[0].length == 0) return 0;
int m = matrix.length, n = matrix[0].length;
int[][] cache = new int[m][n];
int max = 1;
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
int len = DFS(matrix, i, j, cache);
max = Math.max(max, len);
}
}
return max;
}
}