题目:
Given a set of distinct positive integers, find the largest subset such that every pair (Si, Sj) of elements in this subset satisfies: Si % Sj = 0 or Sj % Si = 0.
If there are multiple solutions, return any subset is fine.
Example 1:
nums: [1,2,3]
Result: [1,2] (of course, [1,3] will also be ok)
Example 2:
nums: [1,2,4,8]
Result: [1,2,4,8]
解答:
参考的discussion里的解法, 核心思想从小到大,每一位数都能被比他大的数整除。
public class Solution {
public List<Integer> largestDivisibleSubset(int[] nums) {
List<Integer> result = new ArrayList();
if (nums == null || nums.length == 0) return result;
Arrays.sort(nums);
int len = nums.length;
int[] parent = new int[len];
int[] count = new int[len];
int max = 0, maxIndex = -1;
//对于i从后往前看,找出每一个可以被它整除的数的数组,并更新它作为从这里开始,往后最大的subset,记录下最大数组开始的地方,并把下一个数记在parent里
for (int i = len - 1; i >= 0; i--) {
for (int j = i; j < len; j++) {
if (nums[j] % nums[i] == 0 && count[i] < count[j] + 1) {
count[i] = count[j] + 1;
parent[i] = j;
if (count[i] > max) {
max = count[i];
maxIndex = i;
}
}
}
}
for (int i = 0; i < max; i++) {
//找出最长的这个数组中的每一个数
result.add(nums[maxIndex]);
maxIndex = parent[maxIndex];
}
return result;
}
}