Problem
Numbers keep coming, return the median of numbers at every time a new number added.
Clarification
What's the definition of Median?
Median is the number that in the middle of a sorted array. If there are n numbers in a sorted array A, the median is A[(n - 1) / 2]. For example, if A=[1,2,3], median is 2. If A=[1,19], median is 1.
Example
For numbers coming list: [1, 2, 3, 4, 5], return [1, 1, 2, 2, 3].
For numbers coming list: [4, 5, 1, 3, 2, 6, 0], return [4, 4, 4, 3, 3, 3, 3].
For numbers coming list: [2, 20, 100], return [2, 2, 20].
Challenge
Total run time in O(nlogn).
Tags
LintCode Copyright Heap Priority Queue Google
Note
建立两个堆,一个堆就是PriorityQueue本身,也就是一个最小堆;另一个要写一个Comparator,使之成为一个最大堆。我们把遍历过的数组元素对半分到两个堆里,更大的数放在最小堆,较小的数放在最大堆。为什么这么分呢?因为要从maxHeap堆顶取较小的一半元素中最大的那个,而对另一半较大的数,我们并不关心。
同时,确保最大堆的size比最小堆大1,才能从最大堆的顶端返回median。
Solution
public class Solution {
public int[] medianII(int[] nums) {
if (nums == null || nums.length == 0) return new int[0];
int[] res = new int[nums.length];
PriorityQueue<Integer> minHeap = new PriorityQueue<>();
PriorityQueue<Integer> maxHeap = new PriorityQueue<>(16, new Comparator<Integer>() {
public int compare(Integer x, Integer y) {
return y-x;
}
});
res[0] = nums[0];
maxHeap.add(nums[0]);
for (int i = 1; i < nums.length; i++) {
int max = maxHeap.peek();
if (nums[i] <= max) maxHeap.add(nums[i]);
else minHeap.add(nums[i]);
if (maxHeap.size() > minHeap.size()+1) minHeap.add(maxHeap.poll());
else if (maxHeap.size() < minHeap.size()) maxHeap.add(minHeap.poll());
res[i] = maxHeap.peek();
}
return res;
}
}
LeetCode Version
public class MedianFinder {
PriorityQueue<Integer> minheap = new PriorityQueue<>();
PriorityQueue<Integer> maxheap = new PriorityQueue<>(1, new Comparator<Integer>() {
public int compare(Integer i1, Integer i2) {
return i2-i1;
}
});
// Or we can use: = new PriorityQueue<>(1, Collections.reverseOrder());
// Adds a number into the data structure.
public void addNum(int num) {
maxheap.offer(num);
minheap.offer(maxheap.poll());
if (maxheap.size() < minheap.size()) maxheap.offer(minheap.poll());
else if (maxheap.size() > minheap.size()) minheap.offer(maxheap.poll());
//or (maxheap.size() > minheap.size()+1)
}
// Returns the median of current data stream
public double findMedian() {
if(maxheap.size() == minheap.size()) return (maxheap.peek()+minheap.peek())/2.0;
return maxheap.peek();
}
};